Maja Fošner (Avtor), Joso Vukman (Avtor)

Povzetek

The main purpose of this paper is to prove the following result. Let ▫$R$▫ be a prime ring of characteristic different from two and let ▫$T : R \to R$▫ be an additive mapping satisfying the relation ▫$T(x^3) = T(x)x^{2} - xT(x)x + x^{2} T(x)$▫ for all ▫$x \in R$▫. In this case ▫$T$▫ is of the form ▫$4T(x) = qx + xq$▫, where ▫$q$▫ is some fixed element from the symmetric Martindale ring of quotients. This result makes it possible to solve some functional equations in prime rings with involution which are related to bicircular projections.

Ključne besede

matematika;algebra;prakolobar;polprakolobar;funkcijska identiteta;odvajanje;jordansko odvajanje;involucija;bicirkularni projektor;mathematics;prime ring;semiprime ring;functional identity;derivation;Jordan derivation;involution;bicircular projection;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UM FNM - Fakulteta za naravoslovje in matematiko
UDK: 512.552
COBISS: 15609352 Povezava se bo odprla v novem oknu
ISSN: 0026-9255
Št. ogledov: 809
Št. prenosov: 72
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
URN: URN:SI:UM:
Vrsta dela (COBISS): Delo ni kategorizirano
Strani: str. 135-150
Letnik: ǂVol. ǂ152
Zvezek: ǂno. ǂ2
Čas izdaje: 2007
ID: 1475130