Iztok Banič (Author), Rija Erveš (Author), Janez Žerovnik (Author)

Abstract

Let ▫${\mathcal{D}}^E_q(G)$▫ denote the maximum diameter among all subgraphs obtained by deleting ▫$q$▫ edges of ▫$G$▫. Let ▫${\mathcal{D}}^V_p(G)$▫ denote the maximum diameter among all subgraphs obtained by deleting ▫$p$▫ vertices of ▫$G$▫. We prove that ▫${\mathcal{D}}^E_a(G) \leqslant {\mathcal{D}}^V_a(G) + 1$▫ a for all meaningful ▫$a$▫. We also define mixed fault diameter ▫${\mathcal{D}}^M_{(p,q)}(G)$▫, where ▫$p$▫ vertices and ▫$q$▫ edges are deleted at the same time. We prove that for ▫$0 < l \leqslant a$▫, ▫${\mathcal{D}}^E_a(G) \leqslant {\mathcal{D}}^M_{(a-\ell,\ell)}(G) \leqslant {\mathcal{D}}^V_a(G) + 1$▫, and give some examples.

Keywords

vertex-connectivity;edge-connectivity;vertex fault diameter;edge fault diameter;mixed fault diameter;interconnection network;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FS - Faculty of Mechanical Engineering
UDC: 519.17
COBISS: 13396502 Link will open in a new window
ISSN: 0196-8858
Views: 1127
Downloads: 98
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary keywords: teorija grafov;povezanost po točkah;povezanost po povezavah;povezavni okvarni premer;točkovni okvarni premer;mešani okvarni premer;povezovalna mreža;ne zaključna dela;Matematika;Teorija grafov;
URN: URN:SI:UM:
Type (COBISS): Article
Pages: str. 231-238
Volume: ǂVol. ǂ43
Issue: ǂiss. ǂ3
Chronology: 2009
DOI: 10.1016/j.aam.2009.01.005
ID: 1472434
Recommended works:
, no subtitle data available
, no subtitle data available
, delo diplomskega seminarja