Abstract
Obravnavano je prekrižno število grafov Sierpińskega ▫$S(n,k)$▫ in njihovih regularizacij ▫$S^+(n,k)$▫ in ▫$S^{++}(n,k)$▫. Predstavljene so eksplicitne risbe teh grafov, ki so optimalne za ▫$S^+(n,k)$▫ in ▫$S^{++}(n,k)$▫ za vse ▫$n \ge 1$▫ in ▫$k \ge 1$▫. To sta prvi netrivialni družini grafov "fraktalnega" tipa, za katere je poznano prekrižno število.
Keywords
matematika;teorija grafov;risanje grafov;prekrižno število;grafi Sierpińskega;avtomorfizmi grafov;ne zaključna dela;mathematics;graf theory;graph drawing;crossing number;Sierpiński graphs;graph automorphism;
Data
Language: |
English |
Year of publishing: |
2005 |
Typology: |
1.01 - Original Scientific Article |
Organization: |
UL FMF - Faculty of Mathematics and Physics |
UDC: |
519.173 |
COBISS: |
13783897
|
ISSN: |
0364-9024 |
Views: |
69 |
Downloads: |
28 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
Slovenian |
Secondary title: |
Prekrižna števila grafov Sierpińskega |
Secondary abstract: |
The crossing number of Sierpiński graphs ▫$S(n,k)$▫ and their regularizarions ▫$S^+(n,k)$▫ and ▫$S^{++}(n,k)$▫ are studied. Drawings of these graphs are presented and proved to be optimal for ▫$S^+(n,k)$▫ and ▫$S^{++}(n,k)$▫ for every ▫$n \ge 1$▫ and ▫$k \ge 1$▫. The crossing numbers of these graphs are expressed in terms of the crossing number of ▫$K_{k+1}$▫. These are the first nontrivial families of graphs of "fractal" type whose crossing number is known. |
Secondary keywords: |
Teorija grafov; |
URN: |
URN:SI:UM: |
Type (COBISS): |
Not categorized |
Pages: |
str. 186-198 |
Volume: |
ǂVol. ǂ50 |
Issue: |
ǂno. ǂ3 |
Chronology: |
2005 |
DOI: |
10.1002/jgt.20107 |
ID: |
1472567 |