Sandi Klavžar (Author), Bojan Mohar (Author)

Abstract

Obravnavano je prekrižno število grafov Sierpińskega ▫$S(n,k)$▫ in njihovih regularizacij ▫$S^+(n,k)$▫ in ▫$S^{++}(n,k)$▫. Predstavljene so eksplicitne risbe teh grafov, ki so optimalne za ▫$S^+(n,k)$▫ in ▫$S^{++}(n,k)$▫ za vse ▫$n \ge 1$▫ in ▫$k \ge 1$▫. To sta prvi netrivialni družini grafov "fraktalnega" tipa, za katere je poznano prekrižno število.

Keywords

matematika;teorija grafov;risanje grafov;prekrižno število;grafi Sierpińskega;avtomorfizmi grafov;ne zaključna dela;mathematics;graf theory;graph drawing;crossing number;Sierpiński graphs;graph automorphism;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FMF - Faculty of Mathematics and Physics
UDC: 519.173
COBISS: 13783897 Link will open in a new window
ISSN: 0364-9024
Views: 69
Downloads: 28
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary title: Prekrižna števila grafov Sierpińskega
Secondary abstract: The crossing number of Sierpiński graphs ▫$S(n,k)$▫ and their regularizarions ▫$S^+(n,k)$▫ and ▫$S^{++}(n,k)$▫ are studied. Drawings of these graphs are presented and proved to be optimal for ▫$S^+(n,k)$▫ and ▫$S^{++}(n,k)$▫ for every ▫$n \ge 1$▫ and ▫$k \ge 1$▫. The crossing numbers of these graphs are expressed in terms of the crossing number of ▫$K_{k+1}$▫. These are the first nontrivial families of graphs of "fractal" type whose crossing number is known.
Secondary keywords: Teorija grafov;
URN: URN:SI:UM:
Type (COBISS): Not categorized
Pages: str. 186-198
Volume: ǂVol. ǂ50
Issue: ǂno. ǂ3
Chronology: 2005
DOI: 10.1002/jgt.20107
ID: 1472567
Recommended works:
, no subtitle data available
, no subtitle data available
, no subtitle data available