Petra Šparl (Author), Janez Žerovnik (Author)

Abstract

A 2-local distributed approximation algorithm for multicoloring of a triangle-free hexagonal graph which uses at most ▫$\lceil \frac{5\omega(G)}{4} \rceil + 3$▫ colors is presented.

Keywords

matematika;teorija grafov;barvanje grafov;aproksimacijski algoritem;frekvenčni načrt;▫$k$▫-lokalen porazdeljen algoritem;mathematics;graph theory;approximation algorithms;graph coloring;frequency planning;▫$k$▫-local distributed algorithm;

Data

Language: English
Year of publishing:
Typology: 1.08 - Published Scientific Conference Contribution
Organization: UM FS - Faculty of Mechanical Engineering
UDC: 519.174
COBISS: 13826393 Link will open in a new window
ISSN: 1571-0653
Views: 53
Downloads: 37
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary title: 2-lokalen porazdeljeni algoritmi za posplošeno barvanje heksagonalnih grafov
Secondary keywords: matematika;teorija grafov;barvanje grafov;aproksimacijski algoritem;frekvenčni načrt;▫$k$▫-lokalen porazdeljen algoritem;
URN: URN:SI:UM:
Type (COBISS): Not categorized
Pages: str. 321-325
Issue: ǂVol. ǂ22
Chronology: 2005
ID: 1472589
Recommended works:
, no subtitle data available
, delo diplomskega seminarja