Matej Brešar (Author), Peter Šemrl (Author)

Abstract

Naj bo ▫$M_n$▫ algebra vseh ▫$n \times n$▫ matrik nad komutativnim enotskim kolobarjem ▫$\mathcal{C}$▫, and naj bo ▫$\mathcal{L}$▫ modul nad ▫$\mathcal{C}$▫. Podane so različne karakterizacije bilinearnih preslikav ▫$\{\,.\,,\,.\,\}: M_n \times M_n \to \mathcal{L}$▫ z lastnostjo, da je ▫$\{x,y\} = 0$▫, kadarkoli ▫$x$▫ in ▫$y$▫ komutirata. Kot glavno aplikacijo dobimo dokončno rešitev problema opisa (ne nujno bijektivnih) linearnih ohranjevalcev komutativnosti iz ▫$M_n$▫ v ▫$M_n$▫ za primer, ko je ▫$\mathcal{C}$▫ poljubno polje; še več, enak opis velja v vsaki končno razsežni centralni enostavni algebri.

Keywords

matematika;matrična algebra;bilinearna preslikava;ohranjevalec komutativnosti;funkcijska identiteta;neasociativni produkt;centralna enostavna algebra;mathematics;matrix algebra;central simple algebra;functional identity;nonassociative product;Lie-admissible algebra;commutativity preserving map;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FMF - Faculty of Mathematics and Physics
UDC: 512.643
COBISS: 13984857 Link will open in a new window
ISSN: 0021-8693
Views: 36
Downloads: 20
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary title: O blinearnih preslikavah na matrikah in aplikacije v teoriji ohranjevalcev komutativnosti
Secondary abstract: Let ▫$M_n$▫ be the algebra of all ▫$n \times n$▫ matrices over a commutative unital ring ▫$\mathcal{C}$▫, and let ▫$\mathcal{L}$▫ be a ▫$\mathcal{C}$▫-module. Various characterizations of bilinear maps ▫$\{\,.\,,\,.\,\}: M_n \times M_n \to \mathcal{L}$▫ with the property that ▫$\{x,y\} = 0$▫ whenever ▫$x$▫ any ▫$y$▫ commute are given. As the main application of this result we obtain the definitive solution of the problem of describing (not necessarily bijective) commutativity preserving linear maps from ▫$M_n$▫ into ▫$M_n$▫ for the case where ▫$\mathcal{C}$▫ is an arbitrary field; moreover, this description is valid in every finite dimensional central simple algebra.
Secondary keywords: matematika;matrična algebra;bilinearna preslikava;ohranjevalec komutativnosti;funkcijska identiteta;neasociativni produkt;centralna enostavna algebra;
URN: URN:SI:UM:
Type (COBISS): Not categorized
Pages: str. 803-837
Volume: ǂVol. ǂ301
Issue: ǂno ǂ2
Chronology: 2006
ID: 1472729
Recommended works:
, no subtitle data available
, doktorska disertacija
, no subtitle data available
, no subtitle data available