Abstract
Glavni rezultat članka karakterizira zvezne bilinearne preslikave ▫$\phi$▫ iz ▫$C^1[0,1] \times C^1[0,1]$▫ v Banachov prostor ▫$X$▫ z lastnostjo, da iz ▫$fg=0$▫ sledi ▫$\phi(f,g) = 0$▫. Ta rezultat se uporabi pri študiju ohranjevalcev ničelnega produkta na ▫$C^1[0,1]$▫ in pri študiju operatorjev na ▫$C^1[0,1]$▫, ki zadoščajo neki verzijo pogoja o lokalnosti operatorja.
Keywords
matematika;teorija operatorjev;zvezne odvedljive funkcije;bilinearni ohranjevalci ničelnega produkta;linearni ohranjevalci ničelnega produkta;lokalni operator;mathematics;operator theory;continuously differentiable functions;zero product preserving bilinear map;zero product preserving linear map;local operator;
Data
Language: |
English |
Year of publishing: |
2008 |
Typology: |
1.01 - Original Scientific Article |
Organization: |
UL FMF - Faculty of Mathematics and Physics |
UDC: |
517.983 |
COBISS: |
14892377
|
ISSN: |
0022-247X |
Views: |
39 |
Downloads: |
20 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
Slovenian |
Secondary title: |
Ohranjevalci ničelnega produkta na C[na]1 [0,1] |
Secondary abstract: |
The main result of the paper characterizes continuous bilinear maps ▫$\phi$▫ from ▫$C^1[0,1] \times C^1[0,1]$▫ into a Banach space ▫$X$▫ with the property that ▫$\phi(f,g) = 0$▫ whenever ▫$fg=0$▫. This is applied to the study of zero product preserving operators on ▫$C^1[0,1]$▫, and operators on ▫$C^1[0,1]$▫ satisfying a version of the condition of the locality of an operator. |
Secondary keywords: |
matematika;teorija operatorjev;zvezne odvedljive funkcije;bilinearni ohranjevalci ničelnega produkta;linearni ohranjevalci ničelnega produkta;lokalni operator; |
URN: |
URN:SI:UM: |
Type (COBISS): |
Not categorized |
Pages: |
str. 472-481 |
Volume: |
ǂVol. ǂ347 |
Issue: |
ǂno. ǂ2 |
Chronology: |
2008 |
DOI: |
10.1016/j.jmaa.2008.06.037 |
ID: |
1473986 |