J. Alaminos (Author), Matej Brešar (Author), Miran Černe (Author), J. Extremera (Author), A. R. Villena (Author)

Abstract

Glavni rezultat članka karakterizira zvezne bilinearne preslikave ▫$\phi$▫ iz ▫$C^1[0,1] \times C^1[0,1]$▫ v Banachov prostor ▫$X$▫ z lastnostjo, da iz ▫$fg=0$▫ sledi ▫$\phi(f,g) = 0$▫. Ta rezultat se uporabi pri študiju ohranjevalcev ničelnega produkta na ▫$C^1[0,1]$▫ in pri študiju operatorjev na ▫$C^1[0,1]$▫, ki zadoščajo neki verzijo pogoja o lokalnosti operatorja.

Keywords

matematika;teorija operatorjev;zvezne odvedljive funkcije;bilinearni ohranjevalci ničelnega produkta;linearni ohranjevalci ničelnega produkta;lokalni operator;mathematics;operator theory;continuously differentiable functions;zero product preserving bilinear map;zero product preserving linear map;local operator;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FMF - Faculty of Mathematics and Physics
UDC: 517.983
COBISS: 14892377 Link will open in a new window
ISSN: 0022-247X
Views: 39
Downloads: 20
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary title: Ohranjevalci ničelnega produkta na C[na]1 [0,1]
Secondary abstract: The main result of the paper characterizes continuous bilinear maps ▫$\phi$▫ from ▫$C^1[0,1] \times C^1[0,1]$▫ into a Banach space ▫$X$▫ with the property that ▫$\phi(f,g) = 0$▫ whenever ▫$fg=0$▫. This is applied to the study of zero product preserving operators on ▫$C^1[0,1]$▫, and operators on ▫$C^1[0,1]$▫ satisfying a version of the condition of the locality of an operator.
Secondary keywords: matematika;teorija operatorjev;zvezne odvedljive funkcije;bilinearni ohranjevalci ničelnega produkta;linearni ohranjevalci ničelnega produkta;lokalni operator;
URN: URN:SI:UM:
Type (COBISS): Not categorized
Pages: str. 472-481
Volume: ǂVol. ǂ347
Issue: ǂno. ǂ2
Chronology: 2008
DOI: 10.1016/j.jmaa.2008.06.037
ID: 1473986