Edward Dobson (Author)

Abstract

Let ▫$G$▫ be a transitive group of odd prime-power degree whose Sylow ▫$p$▫-subgroup ▫$P$▫ is abelian od rank ▫$t$▫. Weshow that if ▫$p > 2^{t-1}$▫, then ▫$G$▫ has a normal subgroup that is a direct product of ▫$t$▫ permutation groups of smaller degree that are either cyclic or doubly-transitive simple groups. As a consequence, we determine the full automorphism group of a Cayley diagraph of an abelian group with rank two such that the Sylow ▫$p$▫-subgroup of the full automorphism group is abelian.

Keywords

teorija grup;teorija grafov;Cayleyjev geaf;Abelova grupa;regularna grupa;▫$p$▫-grupa;group theory;graph theory;Cayley graph;abelian group;regular group;p-group;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UP - University of Primorska
UDC: 512.54:519.17
COBISS: 15159641 Link will open in a new window
ISSN: 1855-3966
Parent publication: Ars mathematica contemporanea
Views: 3068
Downloads: 157
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary keywords: teorija grup;teorija grafov;Cayleyjev geaf;Abelova grupa;regularna grupa;▫$p$▫-grupa;
Type (COBISS): Not categorized
Pages: str. 59-76
Volume: ǂVol. ǂ2
Issue: ǂno. ǂ1
Chronology: 2009
ID: 1474290