Abstract
 
Obravnavamo različne razrede presečnih grafov maksimalnih hiperkock medianskih grafov. Za medianski graf ▫$G$▫ in celo število ▫$k \ge 0$▫ je presečni graf ▫${\mathcal{Q}}_k(G)$▫ definiran kot tisti graf, katerega vozlišča so maksimalne hiperkocke (z ozirom na inkluzijo) grafa ▫$G$▫ in sta dve vozlišči ▫$H_x$▫ in ▫$H_y$▫ v njem sosednji tedaj, ko presek ▫$H_x \cap H_y$▫ vsebuje podgraf izomorfen ▫$Q_k$▫. V članku predstavimo karakterizacije kličnih grafov z uporabo omenjenih presečnih konceptov, ko je ▫$k>0$▫. Vpeljemo tudi t.i. maksimalno 2-presečni graf maksimalnih hiperkock medianskega grafa ▫$G$▫, ki ga označimo z ▫${\mathcal{Q}}_{m2}(G)$▫ in predstavlja tisti graf, katerega vozlišča somaksimalne hiperkocke grafa ▫$G$▫, dve vozlišči v njem pa sta sosednji, če presek pripadajočih hiperkock ni strogo vsebovan v kakem preseku dveh maksimalnih hiperkock. Dokažemo, da je graf ▫$H$▫ brez induciranih diamantov, če in samo če obstaja takšen medianski graf ▫$G$▫, da je ▫$H$▫ izomorfen ▫${\mathcal{Q}}_{m2}(G)$▫. Obravnavamo tudi konvergenco medianskega grafa h grafu na enem vozlišču glede na vse vpeljane operacije.
    Keywords
 
matematika;teorija grafov;kartezični produkt;medianski graf;graf kock;presečni graf;konveksnost;mathematics;graph theory;Cartesian product;median graph;cube graph;intersection graph;convexity;
    Data
 
    
        
            | Language: |  
            English | 
        
        
        
            | Year of publishing: |  
            2009 | 
        
            
        
        
            | Typology: |  
            1.01 - Original Scientific Article |         
        
            
        
            | Organization: |  
            UM FKBV - Faculty of Agriculture |         
        
        
            | UDC: |  
            519.17 |         
        
   
        
        
            | COBISS: |  
            
                
                    15167065
                     
                
             | 
        
        
        
            | ISSN: |  
            0012-365X | 
        
        
  
        
            | Views: |  
            775 | 
        
        
        
            | Downloads: |  
            92 | 
        
        
        
            | Average score: |  
            0 (0 votes) | 
        
        
            | Metadata: |  
            
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
             | 
        
    
    
    Other data
 
    
        
            | Secondary language: |  
            Unknown | 
        
        
        
            | Secondary title: |  
            Presečni koncepti kock v medianskih grafih | 
        
        
        
        
            | Secondary abstract: |  
            We study different classes of intersection graphs of maximal hypercubes of median graphs. For a median graph ▫$G$▫ and ▫$k \ge 0$▫, the intersection graph ▫${\mathcal{Q}}_k(G)$▫ is defined as the graph whose vertices are maximal hypercubes (by inclusion) in ▫$G$▫, and two vertices ▫$H_x$▫ and ▫$H_y$▫ in ▫${\mathcal{Q}}_k(G)$▫ are adjacent whenever the intersection ▫$H_x \cap H_y$▫ contains a subgraph isomorphic to ▫$Q_k$▫. Characterizations of clique-graphs in terms of these intersection concepts when ▫$k>0$▫, are presented. Furthermore, we introduce the so-called maximal 2-intersection graph of maximal hypercubes of a median graph ▫$G$▫, denoted ▫${\mathcal{Q}}_{m2}(G)$▫ whose vertices are maximal hypercubes of ▫$G$▫, and two vertices are adjacent if the intersection of the corresponding hypercubes is not a proper subcube of some intersection of two maximal hypercubes. We show that a graph ▫$H$▫ is diamond-free if and only if there exists a median graph ▫$G$▫ such that ▫$H$▫ is isomorphic to ▫${\mathcal{Q}}_{m2}(G)$▫. We also study convergence of median graphs to the one-vertex graph with respect to all these operations. | 
        
        
        
            | Secondary keywords: |  
            matematika;teorija grafov;kartezični produkt;medianski graf;graf kock;presečni graf;konveksnost; | 
        
        
            | URN: |  
            URN:SI:UM: | 
        
        
            
        
            | Type (COBISS): |  
            Not categorized | 
        
        
        
           
        
           
        
           
        
           
        
           
        
           
        
           
        
            | Pages: |  
            str. 2990-2997 | 
        
        
           
        
            | Volume: |  
            ǂVol. ǂ309 | 
        
        
           
        
            | Issue: |  
            ǂiss. ǂ10 | 
        
        
           
        
            | Chronology: |  
            2009 | 
        
        
           
        
           
        
           
        
           
        
           
        
          
        
          
        
          
        
         
        
         
        
        
            | ID: |  
            1474305 |