Abstract
Množica ▫$S$▫ vozlišč grafa ▫$G$▫ je geodetska, če vsako vozlišče grafa ▫$G$▫ leži na intervalu med dvema vozliščema iz ▫$S$▫. Velikost najmanjše geodetske množice grafa ▫$G$▫ se imenuje geodetsko število ▫$g(G)$▫ grafa ▫$G$▫. V članku dokažemo, da geodetsko število leksikografskega produkta ▫$G \circ H$▫, kjer ▫$H$▫ ni poln graf, leži med 2 in ▫$3g(G)$▫. Okarakteriziramo vse grafe ▫$G$▫ in ▫$H$▫, za katere je ▫$G \circ H = 2$▫, kot tudi leksikografske produkte ▫$T \circ H$▫, za katere je ▫$g(T \circ H) = 3g(G)$▫, kjer je ▫$T$▫ izomorfen drevesu. Z uporabo novega koncepta geodominantnih trojic grafa ▫$G$▫ najdemo formulo, ki določi točno geodetsko število ▫$G \circ H$▫, kjer je ▫$G$▫ poljuben graf in ▫$H$▫ graf, ki ni poln.
Keywords
matematika;teorija grafov;leksikografski produkt;geodetsko število;geodominantna trojica;mathematics;graph theory;lexicographic product;geodetic number;geodominating triple;
Data
Language: |
English |
Year of publishing: |
2011 |
Typology: |
1.01 - Original Scientific Article |
Organization: |
UM FERI - Faculty of Electrical Engineering and Computer Science |
UDC: |
519.17 |
COBISS: |
15929945
|
ISSN: |
0012-365X |
Views: |
311 |
Downloads: |
24 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Geodetsko število leksikografskih produktov grafov |
Secondary abstract: |
A set ▫$S$▫ of vertices of a graph ▫$G$▫ is a geodetic set if every vertex of ▫$G$▫ lies in an interval between two vertices from ▫$S$▫. The size of a minimum geodetic set in ▫$G$▫ is the geodetic number ▫$g(G)$▫ of ▫$G$▫. We find that the geodetic number of the lexicographic product ▫$G \circ H$▫ for a non-complete graph ▫$H$▫ lies between 2 and ▫$3g(G)$▫. We characterize the graphs ▫$G$▫ and ▫$H$▫ for which ▫$G \circ H = 2$▫, as well as the lexicographic products ▫$T \circ H$▫ that enjoy ▫$g(T \circ H) = 3g(G)$▫, when ▫$T$▫ is isomorphic to a tree. Using a new concept of the so-called geodominating triple of a graph ▫$G$▫, a formula that expresses the exact geodetic number of ▫$G \circ H$▫ is established, where ▫$G$▫ is an arbitrary graph and ▫$H$▫ a non-complete graph. |
Secondary keywords: |
matematika;teorija grafov;leksikografski produkt;geodetsko število;geodominantna trojica; |
URN: |
URN:SI:UM: |
Type (COBISS): |
Not categorized |
Pages: |
str. 1693-1698 |
Volume: |
Vol. 311 |
Issue: |
iss. 16 |
Chronology: |
2011 |
ID: |
1475488 |