Jezik: | Angleški jezik |
---|---|
Leto izida: | 2008 |
Tipologija: | 1.01 - Izvirni znanstveni članek |
Organizacija: | UM FERI - Fakulteta za elektrotehniko, računalništvo in informatiko |
UDK: | 519.17 |
COBISS: | 14936409 |
ISSN: | 0012-365X |
Št. ogledov: | 685 |
Št. prenosov: | 91 |
Ocena: | 0 (0 glasov) |
Metapodatki: |
Sekundarni jezik: | Neznan jezik |
---|---|
Sekundarni naslov: | Geodetsko število in sorodne metrične množice v kartezičnih produktih grafov |
Sekundarni povzetek: | A set ▫$S$▫ of vertices of a graph ▫$G$▫ is a geodetic set if every vertex of ▫$G$▫ lies in at least one interval between the vertices of ▫$S$▫. The size of a minimum geodetic set in ▫$G$▫ is the geodetic number of ▫$G$▫. Upper bounds for the geodetic number of Cartesian product graphs are proved and for several classes exact values are obtained. It is proved that many metrically defined sets in Cartesian products have product structure and that the contour set of a Cartesian product is geodetic if and only if their projections are geodetic sets in factors. |
Sekundarne ključne besede: | matematika;teorija grafov;kartezični produkt;geodetsko število;geodetska množica;konturna množica; |
URN: | URN:SI:UM: |
Vrsta dela (COBISS): | Delo ni kategorizirano |
Strani: | str. 5555-5561 |
Letnik: | ǂVol. ǂ308 |
Zvezek: | ǂiss. ǂ23 |
Čas izdaje: | 2008 |
ID: | 1474026 |