Jezik: | Angleški jezik |
---|---|
Leto izida: | 2008 |
Tipologija: | 1.01 - Izvirni znanstveni članek |
Organizacija: | UM FERI - Fakulteta za elektrotehniko, računalništvo in informatiko |
UDK: | 519.17 |
COBISS: | 14761305 |
ISSN: | 1077-8926 |
Št. ogledov: | 703 |
Št. prenosov: | 214 |
Ocena: | 0 (0 glasov) |
Metapodatki: |
Sekundarni jezik: | Neznan jezik |
---|---|
Sekundarni naslov: | Igralno kromatično število kartezičnih produktov grafov |
Sekundarni povzetek: | The game chromatic number ▫$\chi_g$▫ is considered for the Cartesian product ▫$G \Box H$▫ of two graphs ▫$G$▫ and ▫$H$▫. Exact values of ▫$\chi_g(\K_2 \Box H)$▫ are determined when $H$ is a path, a cycle, or a complete graph. By using a newly introduced "game of combination" we show that the game chromatic number is not bounded in the class of Cartesian products of two complete bipartite graphs. This result implies that the game chromatic number ▫$\chi_g(G \Box H)$▫ is not bounded from above by a function of game chromatic numbers of graphs ▫$G$▫ and ▫$H$▫. An analogous result is derived for the game coloring number of the Cartesian product of graphs. |
Sekundarne ključne besede: | matematika;teorija grafov;kartezični produkt grafov;igralno kromatično število; |
URN: | URN:SI:UM: |
Vrsta dela (COBISS): | Delo ni kategorizirano |
Strani: | R72 (13 str.) |
Letnik: | ǂVol. ǂ15 |
Zvezek: | ǂno. ǂ1 |
Čas izdaje: | 2008 |
ID: | 1473580 |