J. Alaminos (Author), Matej Brešar (Author), Peter Šemrl (Author), A. R. Villena (Author)

Abstract

Naj bosta ▫$A$▫ in ▫$B$▫ enotski polenostavni Banachovi algebri. Če je ▫$\phi \colon M_2(A)\to B$▫ bijektivna linearna preslikava, ki ohranja spekter, potem je ▫$\phi$▫ jordanski homomorfizem.

Keywords

matematika;teorija operatorjev;ohranjevalec spektera;Banachova algebra;jordanski homomorfizem;mathematics;operator theory;spectrum-preserving map;Banach algebra;Jordan homomorphism;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FMF - Faculty of Mathematics and Physics
UDC: 517.98
COBISS: 16067673 Link will open in a new window
ISSN: 0022-247X
Views: 48
Downloads: 16
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary title: O ohranjevalcih spektra
Secondary abstract: Let ▫$A$▫ and ▫$B$▫ be unital semisimple Banach algebras. If ▫$\phi \colon M_2(A)\to B$▫ is a bijective spectrum-preserving linear map, then ▫$\phi$▫ is a Jordan homomorphism.
Secondary keywords: matematika;teorija operatorjev;ohranjevalec spektera;Banachova algebra;jordanski homomorfizem;
URN: URN:SI:UM:
Type (COBISS): Not categorized
Pages: str. 595-603
Volume: Vol. 387
Issue: iss. 2
Chronology: 2012
ID: 1475862