Dušan Pagon (Author), Dušan Repovš (Author), Mikhail Zaicev (Author)

Abstract

Predmet naših raziskav so polinomske identitete končno razsežnih enostavnih barvnih Liejevih superalgeber nad algebrsko zaprtim poljem z ničelno karakteristiko, gradacijo katerih podaja produkt dveh cikličnih grup reda 2. Dokazujemo, da kodimenzije opisanih identitet naraščajo eksponentno, stopnja te rasti pa je enaka razsežnosti dane algebre. Podoben rezultat smo dobili tudi za gradirane identitete in gradirane kodimenzije.

Keywords

matematika;neasociativna algebra;Liejeve superalgebre;polinomske identitete;kodimenzije;eksponentna rast;mathematics;nonassociative algebra;color Lie superalgebras;polynomial identities;codimensions;exponential growth;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FMF - Faculty of Mathematics and Physics
UDC: 512.554.3:515.127
COBISS: 16070233 Link will open in a new window
ISSN: 0949-5932
Views: 42
Downloads: 7
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: O kodimenzijski rasti enostavnih barvnih Liejevih algeber
Secondary abstract: We study polynomial identities of finite dimensional simple color Lie superalgebras over an algebraically closed field of characteristic zero graded by the product of two cyclic groups of order 2. We prove that the codimensions of identities grow exponentially and the rate of exponent equals the dimension of the algebra. A similar result is also obtained for graded identities and graded codimensions.
URN: URN:SI:UM:
Type (COBISS): Not categorized
Pages: str. 465-479
Volume: Vol. 22
Issue: no. 2
Chronology: 2012
ID: 1475867
Recommended works:
, no subtitle data available
, no subtitle data available