Simon Špacapan (Author)

Abstract

The ▫$k$▫-independence number of ▫$G$▫, denoted as ▫$\alpha_k(G)$▫, is the size of a largest ▫$k$▫-colorable subgraph of ▫$G$▫. The direct product of graphs ▫$G$▫ and ▫$H$▫, denoted as ▫$G \times H$▫, is the graph with vertex set ▫$V(G) \times V(H)$▫, where two vertices ▫$(x_1, y_1)$▫ and ▫$(x_2, y_2)$▫ are adjacent in ▫$G \times H$▫, if ▫$x_1$▫ is adjacent to ▫$x_2$▫ in ▫$G$▫ and ▫$y_1$▫ is adjacent to ▫$y_2$▫ in ▫$H$▫. We conjecture that for any graphs ▫$G$▫ and ▫$H$▫, ▫$$\alpha_k(G \times H) \ge \alpha_k(G)|V(H)| + \alpha_k(H)|V(G)| - \alpha_k(G) \alpha_k(H).$$▫ The conjecture is stronger than Hedetniemi's conjecture. We prove the conjecture for ▫$k = 1, 2$▫ and prove that ▫$\alpha_k(G \times H) \ge \alpha_k(G)|V(H)| + \alpha_k(H)|V(G)| - \alpha_k(G) \alpha_k(H)$▫ holds for any ▫$k$▫.

Keywords

matematika;teorija grafov;neodvisnostno število;kartezični produkt grafov;mathematics;graph theory;independence number;Cartesian product of graphs;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UM FS - Faculty of Mechanical Engineering
UDC: 519.17
COBISS: 16079705 Link will open in a new window
ISSN: 0195-6698
Views: 34
Downloads: 21
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary keywords: matematika;teorija grafov;neodvisnostno število;kartezični produkt grafov;
Type (COBISS): Not categorized
Pages: str. 1377-1383
Volume: Vol. 32
Issue: no. 8
Chronology: 2011
ID: 1475892
Recommended works:
, no subtitle data available
, no subtitle data available
, no subtitle data available