| Jezik: | Angleški jezik |
|---|---|
| Leto izida: | 2008 |
| Tipologija: | 1.08 - Objavljeni znanstveni prispevek na konferenci |
| Organizacija: | UM FNM - Fakulteta za naravoslovje in matematiko |
| UDK: | 519.17 |
| COBISS: |
14626905
|
| ISSN: | 0195-6698 |
| Št. ogledov: | 1121 |
| Št. prenosov: | 75 |
| Ocena: | 0 (0 glasov) |
| Metapodatki: |
|
| Sekundarni jezik: | Slovenski jezik |
|---|---|
| Sekundarni naslov: | Razlikovalno število kartezičnih produktov polnih grafov |
| Sekundarni povzetek: | The distinguishing number ▫$D(G)$▫ of a graph ▫$G$▫ is the least integer ▫$d$▫ such that ▫$G$▫ has a labeling with ▫$d$▫ labels that is preserved only by a trivial automorphism. We prove that Cartesian products of relatively prime graphs whose sizes do not differ too much can be distinguished with a small number of colors. We determine the distinguishing number of the Cartesian product ▫$K_k \square K_k$▫ forall ▫$k$▫ and ▫$n$▫, either explicitly or by a short recursion. We also introduce column-invariant sets of vectors and prove a switching lemma that plays a key role in the proofs. |
| Sekundarne ključne besede: | Matematika;Teorija grafov; |
| URN: | URN:SI:UM: |
| Vrsta dela (COBISS): | Članek v reviji |
| Strani: | Str. 922-929 |
| DOI: | 10.1016/j.ejc.2007.11.018 |
| ID: | 1473512 |