| Jezik: | Angleški jezik |
|---|---|
| Leto izida: | 2010 |
| Tipologija: | 1.08 - Objavljeni znanstveni prispevek na konferenci |
| Organizacija: | UL FMF - Fakulteta za matematiko in fiziko |
| UDK: | 519.17 |
| COBISS: |
15552601
|
| ISSN: | 0012-365X |
| Št. ogledov: | 47 |
| Št. prenosov: | 27 |
| Ocena: | 0 (0 glasov) |
| Metapodatki: |
|
| Sekundarni jezik: | Slovenski jezik |
|---|---|
| Sekundarni naslov: | Razlikovalno kromatično število kartezičnega produkta dveh polnih grafov |
| Sekundarni povzetek: | A labeling of a graph ▫$G$▫ is distinguishing if it is only preserved by the trivial automorphism of ▫$G$▫. The distinguishing chromatic number of ▫$G$▫ is the smallest integer ▫$k$▫ such that ▫$G$▫ has a distinguishing labeling that is at the same time a proper vertex coloring. The distinguishing chromatic number of the Cartesian product $K_k\Box K_n$ is determined for all ▫$k$▫ and ▫$n$▫. In most of the cases it is equal to the chromatic number, thus answering a question of Choi, Hartke and Kaul whether there are some other graphs for which this equality holds. |
| Sekundarne ključne besede: | Teorija grafov; |
| URN: | URN:SI:UM: |
| Vrsta dela (COBISS): | Delo ni kategorizirano |
| Strani: | Str. 1715-1720 |
| DOI: | 10.1016/j.disc.2009.11.021 |
| ID: | 1475074 |