Ajda Fošner (Author), Zejun Huang (Author), Chi-Kwong Li (Author), Nung-Sing Sze (Author)

Abstract

V članku so karakterizirane linearne preslikave na tenzorskem produktu kompleksnih matrik, ki ohranjajo numerični radij.

Keywords

matematika;teorija matrik;kompleksne matrike;linearni ohranjevalci;numerični rang;numerični radij;tenzorski produkt;mathematics;matrix theory;complex matrices;linear preservers;numerical range;numerical radius;tensor product;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UP - University of Primorska
UDC: 512.643
COBISS: 16648025 Link will open in a new window
ISSN: 0022-247X
Views: 4393
Downloads: 102
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Unknown
Secondary title: Linearni ohranjevalci numeričnega radija na tenzorskem produktu matrik
Secondary abstract: Let ▫$m,n \ge 2$▫ be positive integers. Denote by ▫$M_m$▫ the set of ▫$m \times m$▫ complex matrices and by ▫$w(X)$▫ the numerical radius of a square matrix ▫$X$▫. Motivated by the study of operations on bipartite systems of quantum states, we show that a linear map ▫$\phi \colon M_{mn} \to M_{mn}$▫ satisfies ▫$$w(\phi(A\otimes B)) = w(A \otimes B)\quad \text{for all } A \in M_m \text{ and } B \in M_n$$▫ if and only if there is a unitary matrix ▫$U \in M_{mn}$▫ and a complex unit ▫$\xi$▫ such that ▫$$\phi(A \otimes B) = \xi U(\varphi_1(A) \otimes \varphi_2(B))U^\ast \quad \text{for all } A \in M_m \text{ and } B \in M_n$$▫ where ▫$\varphi_k$▫ is the identity map or the transposition map ▫$X \mapsto X_t$▫ for ▫$k = 1,2$▫, and the maps ▫$\varphi_1$▫ and ▫$\varphi_2$▫ will be of the same type if ▫$m,n \ge 3$▫. In particular, if ▫$m,n \ge 3$▫, the map corresponds to an evolution of a closed quantum system (under a fixed unitary operator), possibly followed by a transposition. The results are extended to multipartite systems.
Secondary keywords: mathematics;matrix theory;complex matrices;linear preservers;numerical range;numerical radius;tensor product;
Type (COBISS): Not categorized
Pages: str. 183-189
Volume: ǂVol. ǂ407
Issue: ǂiss. ǂ2
Chronology: 2013
ID: 1476880