Simon Špacapan (Author)

Abstract

V članku dokažemo formulo za povezanost po povezavah direktnega produkta grafov. V formuli se povezanost po povezavah produkta izraža kot funkcija povezanosti po povezavah, najmanjše stopnje, števila povezav in dvodelne frustracije obeh faktorjev. Prav tako v članku opišemo strukturo najmanjših presečnih množic v direktnih produktih grafov.

Keywords

matematika;teorija grafov;direktni produkt;povezanost po povezavah;mathematics;graph theory;direct product;edge connectivity;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UM FS - Faculty of Mechanical Engineering
UDC: 519.17
COBISS: 16649305 Link will open in a new window
ISSN: 0012-365X
Views: 26
Downloads: 18
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Karakterizacija povezanosti po povezavah direktnih produktov grafov
Secondary abstract: The direct product of graphs ▫$G = (V(G),E(G))$▫ and ▫$H = (V(H),E(H))$▫ is the graph, denoted as ▫$G \times H$▫, with vertex set ▫$V(G \times H) = V(G) \times V(H)$▫, where vertices ▫$(x_1,y_1)$▫ and ▫$(x_2,y_2)$▫ are adjacent in ▫$G \times H$▫ if ▫$x_1x_2 \in E(G)$▫ and ▫$y_1y_2 \in E(H)$▫. The edge connectivity of a graph ▫$G$▫, denoted as ▫$\lambda(G)$▫, is the size of a minimum edge-cut in ▫$G$▫. We introduce a function ▫$\psi$▫ and prove the following formula ▫$$\lambda (G \times H) = \min \{2\lambda(G)|E(H)|, 2\lambda(H)|E(G)|, \delta(G \times H), \psi(G,H), \psi(H,G)\} .$$▫ We also describe the structure of every minimum edge-cut in ▫$G \times H$▫.
Type (COBISS): Not categorized
Pages: str. 1385-1393
Volume: Vol. 313
Issue: iss. 12
Chronology: 2013
ID: 1476882
Recommended works:
, no subtitle data available
, no subtitle data available
, no subtitle data available
, no subtitle data available