Ajda Fošner (Author)

Abstract

V članku so obravnavana simetrična ▫$\alpha$▫-odvajanja na pra in polprakolobarjih. Pokazano je, da je pod določenimi pogoji vsak prakolobar z neničelnim simetričnim ▫$\alpha$▫-odvajanjem komutativen.

Keywords

algebra;prakolobarji;polprakolobarji;▫$\alpha$▫-odvajanja;centralizirajoče preslikave;komutirajoče preslikave;prime ring;semiprime ring;symmetric skew 3-derivation;centralizing mapping;commuting mapping;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UP - University of Primorska
UDC: 512.552
COBISS: 16682841 Link will open in a new window
ISSN: 0001-9054
Views: 3632
Downloads: 138
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary title: Prakolobarji in polprakolobarji s simetričnimi [alpha]-odvajanji
Secondary abstract: In this paper we introduce the notion of symmetric skew 3-derivations of prime or semiprime rings and prove that under certain conditions a prime ring with a nonzero symmetric skew 3-derivation has to be commutative.
Secondary keywords: algebra;prakolobarji;polprakolobarji;▫$\alpha$▫-odvajanja;centralizirajoče preslikave;komutirajoče preslikave;
Type (COBISS): Not categorized
Pages: str. 191-200
Volume: ǂVol. ǂ87
Issue: ǂiss. ǂ1-2
Chronology: 2014
ID: 1476931
Recommended works:
, no subtitle data available