Joso Vukman (Author)

Abstract

Identities related to derivations on semiprime rings and standard operator algebras are investigated. We prove the following result which generalizes a classical result of Chernoff. Let ▫$X$▫ be a real or complex Banach space, let ▫$L(X)$▫ be the algebra of all bounded linear operators of ▫$X$▫ into itself and let ▫$A(X) \subseteq L(X)$▫ be a standard operator algebra. Suppose there exists a linear mapping ▫$D:A(X) \to L(X)$▫ satisfying the relation ▫$2D(A^{3}) = D(A^2)A + A^2D(A) + D(A)A^2 + AD(A^2)$▫ for all ▫$A \in A(X)$▫. In this case ▫$D$▫ is of the form ▫$D(A) = AB-BA$▫ for all ▫$A \in A(X)$▫ and some fixed ▫$B \in L(X)$▫, which means that ▫$D$▫ is a linear derivation.

Keywords

matematika;algebra;prakolobar;polprakolobar;Banachov prostor;standardna operatorska algebra;odvajanje;jordansko odvajanje;jordansko trojno odvajanje;mathematics;prime ring;semiprime ring;Banach space;standard operator algebra;derivation;Jordan derivation;Jordan triple derivation;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UM FNM - Faculty of Natural Sciences and Mathematics
UDC: 512.552
COBISS: 18432264 Link will open in a new window
ISSN: 0017-095X
Views: 385
Downloads: 37
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
URN: URN:SI:UM:
Type (COBISS): Not categorized
Pages: str. 43-48
Volume: Vol. 46
Issue: no. 1
Chronology: 2011
ID: 1477037