magistrsko delo
Abstract
Avtomatska obdelava finančnih podatkov za namene napovedovanja cen delnic
je čedalje pogostejša tako pri posameznikih kot korporacijah. Kljub temu ostaja
uspešno napovedovanje za veliko večino nerešena uganka. Dejavnikov, ki vplivajo
na oblikovanje cen delnic na delniškem trgu je ogromno, preveč, da bi lahko
zaobjeli vse. Poleg tega obstaja še teorija o učinkovitem trgu, ki trdi da je
kakršno koli napovedovanje na podlagi javno dostopnih informacij zaman, saj
se v ceni vse te informacije že odražajo. Pojavi se še vprašanje, kako modele
napovedovanja čim bolje ovrednotiti.
V tem magistrskem delu uporabimo metodo podpornih vektorjev za namene
napovedovanja končne cene delnic štirih ameriških podjetij. Za napovedovanje
razvijemo tako klasifikacijska kot regresijska modela, medtem ko vhodne podatke
uporabimo zgodovinske podatke in njihove izpeljanke v obliki tehničnih indikatorjev.
Napovedovalno moč modelov ovrednotimo in jo primerjamo z modelom
naključnega sprehoda, ki naj bi bil optimalen model za napovedovanje v učinkovitem
trgu. Ker gre za finančne časovne vrste, ustreznost modelov preverimo
še v simuliranem trgovalnem okolju, z uporabo preproste strategije trgovanja na
podlagi napovedanih vrednosti.
Pri analizi rezultatov, najprej na podlagi napake med napovedano in dejansko
ceno preverimo uspešnost obeh regresijskih modelov in ugotovimo, da smo v nekaj
primerih boljši od modela naključnega sprehoda. Analizo nadaljujemo s preverjanjem
odstotka pravilno napovedanih smeri sprememb cene, kjer vsi modeli razen
enega regresijskega kažejo večjo napovedovalno moč od modela naključnega sprehoda.
Na koncu preverimo še uspešnost trgovalne strategije, pri čemer ima daleč
najboljše rezultate regresijski model, ki ceno delnic napoveduje na podlagi tehničnih
indikatorjev. Pokažemo še, da je donosnost strategije pogojena z nizkimi transakcijskimi stroški.
Keywords
delnice;finančne časovne vrste;strojno učenje;metoda podpornih vektorjev;učinkovit trg;trgovalna strategija;magisteriji;
Data
Language: |
Slovenian |
Year of publishing: |
2022 |
Typology: |
2.09 - Master's Thesis |
Organization: |
UL FE - Faculty of Electrical Engineering |
Publisher: |
[J. Bračun] |
UDC: |
004.8:336.761.5(043.3) |
COBISS: |
113725443
|
Views: |
81 |
Downloads: |
37 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Forecasting stock price movements with support vector machines |
Secondary abstract: |
Autonomous processing of financial data for stock price predictions is widely used
by individual investors and corporations. successful forecasting however remains,
to a great extent, an unsolved problem. The number of factors that impact stock
price formation is large, and far too big, for us to be able to factor them all in.
Besides that, there is a widespread theory of efficient markets, that claims that
forecasting prices based on publicly available data is not possible, since the price
already reflects all publicly known information. There is also a question of how
to determine the success of forecasting models.
In this master’s thesis, we use support vector machines to predict the daily
closing stock price of four American corporations. The models used for forecasting
are both classification and regression models, the input variables used are historical
price data and technical indicators derived from them. The forecasting ability
of the models is then tested and compared to the random walk model, which is
considered to be the optimal forecasting model in an efficient market. Given that
we operate with financial data, the models are also tested in a simulated trading
environment using their predictions in a simple trading strategy.
For the analysis, we first look at the error metric between the prices we predict
using the regression models and the actual prices. We show that in some cases
we produce a smaller error that the random walk model. We then analyze the
percent of correctly predicted price movement directions, where we compare all
the models and show that only one regression model, does not outperform the
random walk model. Finally, we compare the returns and risk-adjusted returns
using a trading strategy, by far the best results are shown using the predictions
of the regression models based on technical indicators. It is also concluded that
the minimization of transaction costs is needed for a profitable trading strategy. |
Secondary keywords: |
stocs;financial time series;machine learning;support vector machine;efficient market;trading strategy; |
Type (COBISS): |
Master's thesis/paper |
Study programme: |
1000316 |
Embargo end date (OpenAIRE): |
1970-01-01 |
Thesis comment: |
Univ. v Ljubljani, Fak. za elektrotehniko |
Pages: |
XVIII, 68 str. |
ID: |
15822498 |