Matjaž Milfelner (Author), Uroš Župerl (Author), Franc Čuš (Author)

Abstract

Napovedovanje rezalnih sil pri frezanju z oblikovnim krogelnim frezalom je zelo pomembno za določitev optimalnih rezalnih parametrov pri postopku frezanja. Razviti modeli rezalnih sil pri frezanju z oblikovnim krogelnim frezalom, ki so predstavljeni v raziskavah, temeljijo na analitičnih metodah in so določeni z uporabo teoretičnega in praktičnega znanja ter preizkusov. V prispevku je predstavljen razvoj genetskega modela rezalnih sil za oblikovno krogelno frezalo z umetno inteligenco (genetsko programiranje). V genetskem modelu so upoštevani vsi vplivni parametri, ki vplivajo na velikost rezalne sile med postopkom frezanja. Predstavljeni model je ustvarjen iz preizkusnih podatkov za jeklo Ck45 pri različnih rezalnih parametrih. Dobljeni rezultati prikazujejo, da genetski model rezalne sile ustreza preizkusnim podatkom.

Keywords

frezala krogelna;frezanje;modeli genetski;sile rezanja;strojništvo

Data

Language: Slovenian
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UM FS - Faculty of Mechanical Engineering
Publisher: Association of Mechanical Engineers and Technicians of Slovenia et al.
UDC: 621.914:004.8
COBISS: 8034075 Link will open in a new window
ISSN: 0039-2480
Parent publication: Strojniški vestnik
Views: 319
Downloads: 48
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Generation of a model for cutting forces using artificial intelligence
Secondary abstract: Being able to predict the cutting forces during milling with a ball-end milling cutter is very important for determining the optimal cutting parameters in the milling process. The already developed models of cutting forces in ball-end milling are based on analytical methods and are determined by means of theoretical and practical knowledge as well as experiments. This paper presents the development of a genetic model of cutting forces for a ball-end milling cutter using artificial intelligence (genetic programming). In the genetic model, all the parameters influencing the size of the cutting forces during the milling process are considered. The presented model is generated from experimental data for Ck45 steel with different cutting parameters. The results indicate that the genetic model of the cutting force agrees with the experimental data.
Secondary keywords: genetic models;cutting forces;milling;ball-end mill;modeli genetski;sile rezanja;frezanje;frezala krogelna;
URN: URN:NBN:SI
Type (COBISS): Not categorized
Pages: str. 41-54
Volume: ǂLetn. ǂ51
Issue: ǂšt. ǂ1
Chronology: 2005
ID: 1742821