Abstract
We prove the existence of solutions for the following critical Choquard type problem with a variable-order fractional Laplacian and a variable singular exponent ▫$$\begin{aligned} \begin{aligned} a(-\varDelta )^{s(\cdot )}u+b(-\varDelta )u&=\lambda |u|^{-\gamma (x)-1}u+\left( \int _{\varOmega }\frac{F(y,u(y))}{|x-y| ^{\mu (x,y)}}dy\right) f(x,u)\\&+\eta H(u-\alpha )|u|^{r(x)-2}u,~\text {in}~\varOmega ,\\ u&=0,~\text {in}~{\mathbb {R}}^N\setminus \varOmega , \end{aligned} \end{aligned}$$▫ where ▫$a(-\varDelta )^{s(\cdot )}+b(-\varDelta )$▫ is a mixed operator with variable order ▫$s(\cdot ):{\mathbb {R}}^{2N}\rightarrow (0,1)$▫, ▫$a, b\ge 0$▫ with ▫$a+b>0$▫, ▫$H$▫ is the Heaviside function (i.e., ▫$H(t)=0$▫ if ▫$t\le 0$▫, ▫$H(t)=1$▫ if▫ $t>0$▫), ▫$\varOmega \subset {\mathbb {R}}^N$▫ is a bounded domain, ▫$N\ge 2$▫, ▫$\lambda >0$▫, ▫$0<\gamma ^{-}=\underset{x\in \bar{\varOmega }}{\inf }\{\gamma (x)\}\le \gamma (x)\le \gamma ^+ =\underset{x\in \bar{\varOmega }}{\sup }\{\gamma (x)\}<1$▫, ▫$\mu$▫ is a continuous variable parameter, and ▫$F$▫ is the primitive function of a suitable ▫$f$▫. The variable exponent ▫$r(x)$▫ can be equal to the critical exponent ▫$2_{s}^*(x)=\frac{2N}{N-2\bar{s}(x)}$▫ with ▫$\bar{s}(x)=s(x,x)$▫ for some ▫$x \in \bar{\varOmega }$▫, and ▫$\eta$▫ is a positive parameter. We also show that as ▫$\alpha \rightarrow 0^+$▫, the corresponding solution converges to a solution for the above problem with ▫$\alpha =0$▫.
Keywords
Choquard type;variable-order fractional operator;mixed operator;variable singular exponent;discontinuous power nonlinearity;
Data
Language: |
English |
Year of publishing: |
2022 |
Typology: |
1.01 - Original Scientific Article |
Organization: |
UL FMF - Faculty of Mathematics and Physics |
UDC: |
517.956 |
COBISS: |
130585603
|
ISSN: |
1311-0454 |
Views: |
134 |
Downloads: |
26 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Type (COBISS): |
Article |
Embargo end date (OpenAIRE): |
2023-12-01 |
Pages: |
str. 2532-2553 |
Volume: |
ǂVol. ǂ25 |
Issue: |
ǂiss. ǂ6 |
Chronology: |
Dec. 2022 |
DOI: |
10.1007/s13540-022-00105-4 |
ID: |
17469812 |