Povzetek

We study the existence of nontrivial weak solutions for a class of generalized ▫$p(x)$▫-biharmonic equations with singular nonlinearity and Navier boundary condition. The proofs combine variational and topological arguments. The approach developed in this paper allows for the treatment of several classes of singular biharmonic problems with variable growth arising in applied sciences, including the capillarity equation and the mean curvature problem.

Ključne besede

generalized p(x)-biharmonic equation;nonhomogeneous differential operator;variable exponent;singular nonlinearity;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 517.956
COBISS: 18816345 Povezava se bo odprla v novem oknu
ISSN: 1937-1632
Št. ogledov: 459
Št. prenosov: 203
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Vrsta dela (COBISS): Članek v reviji
Strani: str. 2057-2068
Letnik: ǂVol. ǂ13
Zvezek: ǂno. ǂ7
Čas izdaje: July 2020
DOI: 10.3934/dcdss.2020158
ID: 11763914