diplomsko delo
Abstract
Zaporedje Fibonaccijevih števil je definirano z F0 = 0, F1 = 1 in za n%2, Fn = F(n-1) + F(n-2). Fibonaccijeva števila imajo dolgo in bogato zgodovino. Poznamo jih, odkar je v začetku 13. stol. Leonardo Fibonacci postavil svoje znamenito vprašanje o razmnoževanju zajčkov. V diplomskem delu predstavljamo kombinatorični pristop k dokazovanju izrekov, vezanih na Fibonaccijeva, Lucasova in Gibonaccijeva števila. Predstavljenih je nekaj povezav med filotakso in zlatim rezom s Fibonaccijevimi števili.
Keywords
matematika;Fibonaccijeva števila;Lucasova števila;kombinatorika;filotaksa;zlati rez;diplomska dela;
Data
Language: |
Slovenian |
Year of publishing: |
2009 |
Source: |
Maribor |
Typology: |
2.11 - Undergraduate Thesis |
Organization: |
UM FNM - Faculty of Natural Sciences and Mathematics |
Publisher: |
[S. Toplak] |
UDC: |
51(043.2) |
COBISS: |
16864776
|
Views: |
3693 |
Downloads: |
331 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
FIBONACCI NUMBERS |
Secondary abstract: |
The Fibonacci numbers are defined by F0 = 0, F1 = 1 and for n%2, Fn = F(n-1) + F(n-2). They have a long and rich history. They have served as mathematical inspiration and amusement since Leonardo Pisano first posed his original rabbit reproduction question at the beginning of the 13th century. In these Graduation Thesis we present combinatorial approach of proving Fibonacci, Lucas and Gibonacci identities. There are present relationships between golden section and phyllotaxis with Fibonacci numbers. |
Secondary keywords: |
mathematic;Fibonacci numbers;Lucas numbers;Gibonacci numbers;combinatorics;phyllotaxis;golden section.; |
URN: |
URN:SI:UM: |
Type (COBISS): |
Undergraduate thesis |
Thesis comment: |
Univ. v Mariboru, Fak. za naravoslovje in matematiko, Oddelek za matematiko in računalništvo |
Pages: |
55 f. |
Keywords (UDC): |
mathematics;natural sciences;naravoslovne vede;matematika;mathematics;matematika; |
ID: |
17771 |