diplomsko delo
Anja Jurgec (Author), Dušan Pagon (Mentor)

Abstract

V prvem delu diplomskega dela smo opisali Gaussovo eliminacijo kot algoritem za reševanje sistema linearnih enačb, s pomočjo katerega dobimo spodnje trikotno matriko L in zgornje trikotno matriko U oziroma LU-razcep. Sledi poglavje o uporabi trikotnega razcepa LU pri reševanju linearnih enačb s primeri: če poznamo trikotni razcep v LU, lahko sistem linearnih enačb rešimo v dveh korakih; determinanta matrike A, katere LU poznamo, je enaka determinanti matrike U; reševanje matričnih enačb; izračun inverzne matrike. Zaradi nepopolnosti uporabe Gaussove eliminacije sta opisana tudi delno in kompletno pivotiranje. Ker je trikotni razcep LU zelo uporaben, so v zadnjem delu predstavljeni nujni in zadostni pogoji za obstoj le-tega v primeru poljubne matrike.

Keywords

matematika;matrike;Gaussova eliminacija;razcepi;linearna algebra;diplomska dela;

Data

Language: Slovenian
Year of publishing:
Source: Maribor
Typology: 2.11 - Undergraduate Thesis
Organization: UM FNM - Faculty of Natural Sciences and Mathematics
Publisher: [A. Jurgec]
UDC: 51(043.2)
COBISS: 17178632 Link will open in a new window
Views: 6164
Downloads: 786
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: LU DECOMPOSITION OF MATRICES
Secondary abstract: In the first part of graduation thesis we describe Gauss elimination as an algorithm for solving a system of linear equations and with which we obtain lower triangular matrix L and upper triangular matrix U or LU decomposition. In a following chapter we consider diferent options of using LU decomposition when solving linear equations with the following examples: when knowing LU decomposition a system of linear equations is solvable in two steps; the determinant of a matrix A, for which a LU decomposition is known, equals the determinant of the matrix U; solving equations with matrices; calculating inverse matrix. Because of Gauss elimination's deficient use we also present full and partial pivoting. Since knowing LU decomposition of a matrix is really useful in the last part we give necessary and sucient conditons for its existence.
Secondary keywords: matrices;linear equations;LU decomposition;Gauss elimination;pivoting;
URN: URN:SI:UM:
Type (COBISS): Undergraduate thesis
Thesis comment: Univ. v Mariboru, Fak. za naravoslovje in matematiko, Oddelek za matematiko in računalništvo
Pages: IX, 40 f.
Keywords (UDC): mathematics;natural sciences;naravoslovne vede;matematika;mathematics;matematika;
ID: 18085
Recommended works:
, diplomsko delo
, Visiting Assistant Professor, 1.10.-31.12.2008, Ohio State University, Columbus, Ohio, USA