diplomsko delo
Abstract
V prvem delu diplomskega dela smo opisali Gaussovo eliminacijo kot algoritem za reševanje sistema linearnih enačb, s pomočjo katerega dobimo spodnje trikotno matriko L in zgornje trikotno matriko U oziroma LU-razcep. Sledi poglavje o uporabi trikotnega razcepa LU pri reševanju linearnih enačb s primeri: če poznamo trikotni razcep v LU, lahko sistem linearnih enačb rešimo v dveh korakih; determinanta matrike A, katere LU poznamo, je enaka determinanti matrike U; reševanje matričnih enačb; izračun inverzne matrike. Zaradi nepopolnosti uporabe Gaussove eliminacije sta opisana tudi delno in kompletno pivotiranje. Ker je trikotni razcep LU zelo uporaben, so v zadnjem delu predstavljeni nujni in zadostni pogoji za obstoj le-tega v primeru poljubne matrike.
Keywords
matematika;matrike;Gaussova eliminacija;razcepi;linearna algebra;diplomska dela;
Data
| Language: |
Slovenian |
| Year of publishing: |
2009 |
| Source: |
Maribor |
| Typology: |
2.11 - Undergraduate Thesis |
| Organization: |
UM FNM - Faculty of Natural Sciences and Mathematics |
| Publisher: |
[A. Jurgec] |
| UDC: |
51(043.2) |
| COBISS: |
17178632
|
| Views: |
6164 |
| Downloads: |
786 |
| Average score: |
0 (0 votes) |
| Metadata: |
|
Other data
| Secondary language: |
English |
| Secondary title: |
LU DECOMPOSITION OF MATRICES |
| Secondary abstract: |
In the first part of graduation thesis we describe Gauss elimination as an algorithm for solving a system of linear equations and with which we obtain lower triangular matrix L and upper triangular matrix U or LU decomposition. In a following chapter we consider diferent options of using LU decomposition when solving linear equations with the following examples: when knowing LU decomposition a system of linear equations is solvable in two steps; the determinant of a matrix A, for which a LU decomposition is known, equals the determinant of the matrix U; solving equations with matrices; calculating inverse matrix. Because of Gauss elimination's deficient use we also present full and partial pivoting. Since knowing LU decomposition of a matrix is really useful in the last part we give necessary and sucient conditons for its existence. |
| Secondary keywords: |
matrices;linear equations;LU decomposition;Gauss elimination;pivoting; |
| URN: |
URN:SI:UM: |
| Type (COBISS): |
Undergraduate thesis |
| Thesis comment: |
Univ. v Mariboru, Fak. za naravoslovje in matematiko, Oddelek za matematiko in računalništvo |
| Pages: |
IX, 40 f. |
| Keywords (UDC): |
mathematics;natural sciences;naravoslovne vede;matematika;mathematics;matematika; |
| ID: |
18085 |