diplomsko delo
Gordana Kmetič (Author), Ajda Fošner (Mentor)

Abstract

Diplomsko delo predstavi matrike kot samostojne algebrske objekte. V prvem delu diplomskega dela so predstavljene matrike, različne vrste le-teh, lastnosti, osnovne operacije in determinante. V drugem delu gre za ugotavljanje naštetih postopkov, lastnosti pri zgoraj in spodaj trikotnih matrikah.

Keywords

matematika;trikotne matrike;kvadratne matrike;determinanta;inverzne matrike;transponiranje;rang;linearne transformacije;diplomska dela;

Data

Language: Slovenian
Year of publishing:
Source: Maribor
Typology: 2.11 - Undergraduate Thesis
Organization: UM FNM - Faculty of Natural Sciences and Mathematics
Publisher: [G. Kmetič]
UDC: 51(043.2)
COBISS: 17421832 Link will open in a new window
Views: 2438
Downloads: 222
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Triangular matrices
Secondary abstract: The following graduation thesis introduces matrices as individual objects of algebra. In the first part I present different matrices, their characteristics, basic operations and determinants. The second part deals with findings of the listed procedures, characteristics at above and below triangular matrices.
Secondary keywords: matrices;above triangular matrices;below triangular matrices;square matrices;determinant;inverse matrices;transposing;rank;linear transformation;
URN: URN:SI:UM:
Type (COBISS): Undergraduate thesis
Thesis comment: Univ. v Mariboru, Fak. za naravoslovje in matematiko, Oddelek za matematiko in računalništvo
Pages: 51 f.
Keywords (UDC): mathematics;natural sciences;naravoslovne vede;matematika;mathematics;matematika;
ID: 18308
Recommended works:
, diplomsko delo
, Visiting Assistant Professor, 1.10.-31.12.2008, Ohio State University, Columbus, Ohio, USA
, diplomsko delo
, diplomsko delo