magistrsko delo
Žan Smrekar (Author), Urban Bren (Mentor), Marko Jukič (Co-mentor)

Abstract

Z uporabo računalniških pristopov in simulacij lahko uspešno modeliramo interakcije, ki so ključne pri razumevanju delovanja in razvoju novih zdravilnih učinkovin. Tekom razvoja se pojavljajo novi razredi peptidnih zdravil. Peptidi so sestavljeni iz verig aminokislinskih preostankov in zajemajo prednosti tako majhnih molekul kot tudi tarčno specifičnost večjih struktur, kot so proteini. Za načrtovanje novih potencialnih struktur peptidov smo tako uporabili računalniške in bioinformacijske pristope, kot je molekulsko sidranje. V magistrski nalogi smo se osredotočili na Fc regijo protiteles kot receptor. Načrtovali in identificirali smo potencialne tetrapeptide s strukturo, ki je podobna eksperimentalnim podatkom. Problema smo se lotili s pomočjo računalniških programov. Ustrezni receptor smo pridobili na prosto dostopnem spletnem mestu https://www.rcsb.org/ (PDB ID: 5U52), za pripravo knjižnice struktur tetrapeptidov in analizo rezultatov smo uporabili analitično platformo KNIME, za molekulsko sidranje smo uporabili programsko opremo CmDock in za grafični vpogled ciljnih struktur računalniški program PyMol.

Keywords

peptidi;Fc regija;molekulsko sidranje;peptidno sidranje;magistrske naloge;

Data

Language: Slovenian
Year of publishing:
Typology: 2.09 - Master's Thesis
Organization: UM FKKT - Faculty of Chemistry and Chemical Engineering
Publisher: [Ž. Smrekar]
UDC: 577.112.5.016(043.2)
COBISS: 157286915 Link will open in a new window
Views: 256
Downloads: 59
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Study of peptide binding to antibody Fc region
Secondary abstract: Computer simulations enable us to examine complex interactions, which are crucial for understanding the mechanisms and the developtment of new active drugs. Lately, new peptide classes of drugs have been emerging. Peptides are composed of chains of amino-acid residues and capture the advantages of both small molecules as well as the target specificity of larger structures such as proteins. Computational and bioinformatics approaches were used to design new potential peptides, where we focused on Fc region of antibodies as the receptor. We designed and identified tetrapeptides with structures analogous to experimental studies. The corresponding receptor was obtained via https://www.rcsb.org database, the KNIME analytical platform was used to prepare the library of tetrapeptide structures and analyse the final results, the CmDock software was applied for molecular docking and the PyMol software for graphical analysis.
Secondary keywords: peptides;Fc region;molecular docking;KNIME Analytics Platform;PyMol;peptide docking;
Type (COBISS): Master's thesis/paper
Thesis comment: Univ. v Mariboru, Fak. za kemijo in kemijsko tehnologijo
Pages: 1 spletni vir (1 datoteka PDF (IX, 54 f.))
ID: 18464789
Recommended works:
, diplomsko delo visokošolskega strokovnega študijskega programa I. stopnje
, predicting protein binding sites using a convolutional neural network