predicting protein binding sites using a convolutional neural network

Povzetek

Identifying binding sites on the protein surface is an important part of computer-assisted drug design processes. Reliable prediction of binding sites not only assists with docking algorithms, but it can also explain the possible side-effects of a potential drug as well as its efficiency. In this work, we propose a novel workflow for predicting possible binding sites of a ligand on a protein surface. We use proteins from the PDBbind and sc-PDB databases, from which we combine available ligand information for similar proteins using all the possible ligands rather than only a special sub-selection to generalize the work of existing research. After performing protein clustering and merging of ligands of similar proteins, we use a three-dimensional convolutional neural network that takes into account the spatial structure of a protein. Lastly, we combine ligandability predictions for points on protein surfaces into joint binding sites. Analysis of our model’s performance shows that its achieved sensitivity is 0.829, specificity is 0.98, and F$_1$ score is 0.517, and that for 54% of larger and pharmacologically relevant binding sites, the distance between their real and predicted centers amounts to less than 4 Å.

Ključne besede

napovedovanje veznih mest proteinov;ligandi;molekulsko sidranje;strojno učenje;konvolucijska nevronska mreža;protein binding site prediction;ligands;molecular docking;machine learning;convolutional neural network;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FRI - Fakulteta za računalništvo in informatiko
UDK: 004.8:615
COBISS: 135845635 Povezava se bo odprla v novem oknu
ISSN: 1999-4923
Št. ogledov: 53
Št. prenosov: 7
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: napovedovanje veznih mest proteinov;ligandi;molekulsko sidranje;strojno učenje;konvolucijska nevronska mreža;
Vrsta dela (COBISS): Članek v reviji
Strani: str. 1-21
Letnik: ǂVol. ǂ15
Zvezek: ǂiss. ǂ1
Čas izdaje: Jan. 2023
DOI: 10.3390/pharmaceutics15010119
ID: 22635409
Priporočena dela:
, predicting protein binding sites using a convolutional neural network
, diplomsko delo