Abstract

We consider an anisotropic ▫$(p, 2)$▫-equation, with a parametric and superlinear reaction term.Weshow that for all small values of the parameter the problem has at least five nontrivial smooth solutions, four with constant sign and the fifth nodal (sign-changing). The proofs use tools from critical point theory, truncation and comparison techniques, and critical groups.

Keywords

anisotropic operators;regularity theory;maximum principle;constant sign and nodal solutions;critical groups;variable exponent;electrorheological fluids;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FMF - Faculty of Mathematics and Physics
UDC: 517.956.2
COBISS: 76549635 Link will open in a new window
ISSN: 0003-6811
Views: 85
Downloads: 23
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Type (COBISS): Article
Pages: str. 1059-1076
Volume: ǂVol. ǂ102
Issue: ǂiss. ǂ4
Chronology: 2023
DOI: 10.1080/00036811.2021.1971199
ID: 18572661