Povzetek

We consider a nonlinear elliptic equation driven by a nonhomogeneous differential operator plus an indefinite potential. On the reaction term we impose conditions only near zero. Using variational methods, together with truncation and perturbation techniques and critical groups, we produce three nontrivial solutions with sign information. In the semilinear case we improve this result by obtaining a second nodal solution for a total of four nontrivial solutions. Finally, under a symmetry condition on the reaction term, we generate a whole sequence of distinct nodal solutions.

Ključne besede

nonhomogeneous differential operator;nonlinear regularity theory;constant sign and nodal solutions;infinitely many nodal solutions;critical groups;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 517.956.2
COBISS: 18436441 Povezava se bo odprla v novem oknu
ISSN: 0095-4616
Št. ogledov: 472
Št. prenosov: 200
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Vrsta dela (COBISS): Članek v reviji
Strani: str. 823-857
Letnik: ǂVol. ǂ81
Zvezek: ǂiss. ǂ3
Čas izdaje: June 2020
DOI: 10.1007/s00245-018-9521-x
ID: 11779593