diplomsko delo
Abstract
Diplomsko delo opisuje klasične paradokse iz teorije verjetnosti. V uvodnem poglavju so predstavljene osnovne definicije teorije verjetnosti in pojmi, ki so uporabljeni v nadaljevanju. Predvsem so to naključne spremenljivke, ki zraven definicije vsebujejo še primere pomembnih porazdelitev, in številske karakteristike. Naslednjih štirinajst poglavij zajema klasične paradokse iz teorije verjetnosti, in sicer: paradoks kockanja, De Méréov paradoks, paradoks delitve, paradoks o neodvisnosti, paradoks igre bridge, pradoks o obdarovanju, St. Petersburški paradoks, paradoks o smrtnosti, paradoks o Bernoullijevem zakonu velikih števil, De Moivreov paradoks, Bertrandov paradoks, paradoks o teoriji iger Bayesov paradoks in paradoks vejitvenih procesov. Vsako poglavje se začne s kratko zgodovino paradoksa ali omeni znanstvenike, ki so sodelovali pri razvoju paradoksa, od njegovega izvora pa vse do rešitve. Sledi opis paradoksa oz. problem, ki ga paradoks obravnava, nato pa je nazorno prikazana rešitev paradoksa. Nekatera poglavja vsebujejo tudi opombe, ki se največkrat nanašajo na podobne probleme, kot jih zastavlja paradoks.
Keywords
matematika;verjetnost;paradoksi;naključne spremenljivke;diplomska dela;
Data
Language: |
Slovenian |
Year of publishing: |
2010 |
Source: |
Maribor |
Typology: |
2.11 - Undergraduate Thesis |
Organization: |
UM FNM - Faculty of Natural Sciences and Mathematics |
Publisher: |
[J. Grosman] |
UDC: |
51(043.2) |
COBISS: |
17741320
|
Views: |
2901 |
Downloads: |
225 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
PARADOXES IN PROBABILITY |
Secondary abstract: |
The thesis describes the paradoxes of classical probability theory. The introductory chapter presents the basic definitions and concepts of probability theory, which are used in graduation thesis below. This are random variables, which contain definitions next to cases of significant distribution, and numerical characteristics. The next fourteen chapters cover the classical paradoxes of probability theory, namely: the paradox of dice, De Mere's paradox, the division paradox, the paradox of independence, the paradox of bridge, the paradox of giving presents, St. Petersburg paradox, the paradox of human mortality, the paradox of Bernoulli's law of large numbers, De Moivre's paradox, Bertrand's paradox, a paradox of game theory, Bayes' paradox and the paradox of branching processes. Each chapter begins with a brief history of paradox, or at least mention the scientists who participated in the development of paradox, since its origins all the way to solutions. What follows is a description of the paradox and a detailed solution of the paradox. Some chapters also contain remarks that most relate to similar problems, as it raises a paradox. |
Secondary keywords: |
probability;paradox;random variable; |
URN: |
URN:SI:UM: |
Type (COBISS): |
Undergraduate thesis |
Thesis comment: |
Univ. v Mariboru, Fak. za naravoslovje in matematiko, Oddelek za matematiko in računalništvo |
Pages: |
54 f. |
Keywords (UDC): |
mathematics;natural sciences;naravoslovne vede;matematika;mathematics;matematika; |
ID: |
18600 |