diplomsko delo
Jana Grosman (Avtor), Dominik Benkovič (Mentor)

Povzetek

Diplomsko delo opisuje klasične paradokse iz teorije verjetnosti. V uvodnem poglavju so predstavljene osnovne definicije teorije verjetnosti in pojmi, ki so uporabljeni v nadaljevanju. Predvsem so to naključne spremenljivke, ki zraven definicije vsebujejo še primere pomembnih porazdelitev, in številske karakteristike. Naslednjih štirinajst poglavij zajema klasične paradokse iz teorije verjetnosti, in sicer: paradoks kockanja, De Méréov paradoks, paradoks delitve, paradoks o neodvisnosti, paradoks igre bridge, pradoks o obdarovanju, St. Petersburški paradoks, paradoks o smrtnosti, paradoks o Bernoullijevem zakonu velikih števil, De Moivreov paradoks, Bertrandov paradoks, paradoks o teoriji iger Bayesov paradoks in paradoks vejitvenih procesov. Vsako poglavje se začne s kratko zgodovino paradoksa ali omeni znanstvenike, ki so sodelovali pri razvoju paradoksa, od njegovega izvora pa vse do rešitve. Sledi opis paradoksa oz. problem, ki ga paradoks obravnava, nato pa je nazorno prikazana rešitev paradoksa. Nekatera poglavja vsebujejo tudi opombe, ki se največkrat nanašajo na podobne probleme, kot jih zastavlja paradoks.

Ključne besede

matematika;verjetnost;paradoksi;naključne spremenljivke;diplomska dela;

Podatki

Jezik: Slovenski jezik
Leto izida:
Izvor: Maribor
Tipologija: 2.11 - Diplomsko delo
Organizacija: UM FNM - Fakulteta za naravoslovje in matematiko
Založnik: [J. Grosman]
UDK: 51(043.2)
COBISS: 17741320 Povezava se bo odprla v novem oknu
Št. ogledov: 2901
Št. prenosov: 225
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: PARADOXES IN PROBABILITY
Sekundarni povzetek: The thesis describes the paradoxes of classical probability theory. The introductory chapter presents the basic definitions and concepts of probability theory, which are used in graduation thesis below. This are random variables, which contain definitions next to cases of significant distribution, and numerical characteristics. The next fourteen chapters cover the classical paradoxes of probability theory, namely: the paradox of dice, De Mere's paradox, the division paradox, the paradox of independence, the paradox of bridge, the paradox of giving presents, St. Petersburg paradox, the paradox of human mortality, the paradox of Bernoulli's law of large numbers, De Moivre's paradox, Bertrand's paradox, a paradox of game theory, Bayes' paradox and the paradox of branching processes. Each chapter begins with a brief history of paradox, or at least mention the scientists who participated in the development of paradox, since its origins all the way to solutions. What follows is a description of the paradox and a detailed solution of the paradox. Some chapters also contain remarks that most relate to similar problems, as it raises a paradox.
Sekundarne ključne besede: probability;paradox;random variable;
URN: URN:SI:UM:
Vrsta dela (COBISS): Diplomsko delo
Komentar na gradivo: Univ. v Mariboru, Fak. za naravoslovje in matematiko, Oddelek za matematiko in računalništvo
Strani: 54 f.
Ključne besede (UDK): mathematics;natural sciences;naravoslovne vede;matematika;mathematics;matematika;
ID: 18600
Priporočena dela:
, diplomsko delo
, ni podatka o podnaslovu
, Visiting Assistant Professor, 1.10.-31.12.2008, Ohio State University, Columbus, Ohio, USA
, študijsko gradivo
, študijsko gradivo