diplomsko delo
Matic Conradi (Author), Slavko Žitnik (Mentor)

Abstract

Cilj te raziskave je razviti sistem, ki je zmožen klasificirati sheme objektov JSON, ki izvirajo iz različnih sistemov za digitalizacijo procesov, ter najti ujemanja s predstavitvami domenskih entitet platforme DevRev. Glavni izziv, s katerim se soočamo, leži v raznolikosti struktur teh objektov, kar zahteva uporabo algoritmov za obdelavo naravnega jezika.

Keywords

uvrščanje shem;Word2Vec;BERT;GPT;veliki jezikovni modeli;univerzitetni študij;diplomske naloge;

Data

Language: Slovenian
Year of publishing:
Typology: 2.11 - Undergraduate Thesis
Organization: UL FRI - Faculty of Computer and Information Science
Publisher: [M. Conradi]
UDC: 004.85:81'322(043.2)
COBISS: 164523267 Link will open in a new window
Views: 45
Downloads: 9
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Use of natural language processing methods for classification of application programming interface schemas into a unified data model
Secondary abstract: The goal of the thesis is to develop a system for classification JSON object schemas originating from various process digitalization systems, and ultimately matching them with domain entities from the DevRev platform. The primary challenge lies in the varying structures of these objects, which necessitates the use of NLP algorithms to capture and compare them.
Secondary keywords: natural language processing;schema classification;Word2Vec;BERT;GPT;large language models;computer science;diploma;Obdelava naravnega jezika (računalništvo);Računalniško jezikoslovje;Računalništvo;Univerzitetna in visokošolska dela;
Type (COBISS): Bachelor thesis/paper
Study programme: 1000468
Embargo end date (OpenAIRE): 1970-01-01
Thesis comment: Univ. v Ljubljani, Fak. za računalništvo in informatiko
Pages: 39 str.
ID: 19876368