Abstract
In this article, we investigate the Kirchhoff-Schrödinger-Poisson type systems on the Heisenberg group of the following form: ▫$\begin{cases} {-(a+b\int_{\Omega}|\nabla_{H} u|^{p}d\xi)\Delta_{H, p}u-\mu\phi |u|^{p-2}u} = \lambda |u|^{q-2}u+|u|^{Q^{\ast}-2}u & \mbox{in}\ \Omega, \\ -\Delta_{H}\phi = |u|^{p} & \mbox{in}\ \Omega, \\ u = \phi = 0 & \mbox{on}\ \partial\Omega, \end{cases}$▫ where ▫$a, b$▫ are positive real numbers, ▫$\Omega\subset \mathbb{H}^N$▫ is a bounded region with smooth boundary, ▫$1 < p < Q$▫, ▫$Q = 2N + 2$▫ is the homogeneous dimension of the Heisenberg group ▫$\mathbb{H}^N$▫, ▫$Q^{\ast} = \frac{pQ}{Q-p}$▫, ▫$q\in(2p, Q^{\ast})$▫ and ▫$\Delta_{H, p}u = \mbox{div}(|\nabla_{H} u|^{p-2}\nabla_{H} u)$▫ is the ▫$p$▫-horizontal Laplacian. Under some appropriate conditions for the parameters ▫$\mu$▫ and ▫$\lambda$▫, we establish existence and multiplicity results for the system above. To some extent, we generalize the results of An and Liu (Israel J. Math., 2020) and Liu et al. (Adv. Nonlinear Anal., 2022).
Keywords
Kirchhoff-Schrödinger-Poisson systems;Heisenberg groups;p-Laplacian operators;critical growth;concentration-compactness principle;
Data
Language: |
English |
Year of publishing: |
2023 |
Typology: |
1.01 - Original Scientific Article |
Organization: |
UL PEF - Faculty of Education |
UDC: |
517.956.2 |
COBISS: |
163051011
|
ISSN: |
2688-1594 |
Views: |
27 |
Downloads: |
5 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Type (COBISS): |
Article |
Pages: |
str. 5749-5765 |
Volume: |
ǂVol. ǂ31 |
Issue: |
ǂno. ǂ9 |
Chronology: |
2023 |
DOI: |
10.3934/era.2023292 |
ID: |
19888173 |