Mingzhe Sun (Avtor), Shaoyun Shi (Avtor), Dušan Repovš (Avtor)

Povzetek

This paper deals with the following degenerate fractional Kirchhoff-type system with magnetic fields and critical growth: ▫$$\begin{aligned} \left\{ \begin{array}{lll} -\mathfrak{M}(\Vert u\Vert _{s,A}^2)[(-\Delta )^s_Au+u] = G_u(|x|,|u|^2,|v|^2) \\ \quad +\left( \mathcal{I}_\mu *|u|^{p^*}\right) |u|^{p^*-2}u \ &{}\text{ in }\,\,\mathbb {R}^N,\\ \mathfrak{M}(\Vert v\Vert _{s,A})[(-\Delta )^s_Av+v] = G_v(|x|,|u|^2,|v|^2) \\ \quad +\left( \mathcal{I}_\mu *|v|^{p^*}\right) |v|^{p^*-2}v \ &{}\text{ in }\,\,\mathbb{R}^N, \end{array}\right. \end{aligned}$$▫ where ▫$$\begin{aligned}\Vert u\Vert _{s,A}=\left( \iint _{\mathbb{R}^{2N}}\frac{|u(x)-e^{i(x-y)\cdot A(\frac{x+y}{2})}u(y)|^2}{|x-y|^{N+2s}}{\text{d}}x {\text{d}}y+\int _{\mathbb{R}^N}|u|^2{\text {d}}x\right) ^{1/2},\end{aligned}$$▫ and ▫$(-\Delta )_{A}^s$▫ and ▫$A$▫ are called magnetic operator and magnetic potential, respectively, ▫$\mathfrak{M}: \mathbb{R}^{+}_{0}\rightarrow \mathbb{R}^{+}_0$▫ is a continuous Kirchhoff function, ▫$\mathcal{I}_\mu (x) = |x|^{N-\mu }$▫ with ▫$0<\mu

Ključne besede

fractional Kirchhoff-type system;upper critical exponent;concentration-compactness principle;variational method;multiple solutions;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 517.956
COBISS: 112532995 Povezava se bo odprla v novem oknu
ISSN: 1660-5446
Št. ogledov: 50
Št. prenosov: 10
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Vrsta dela (COBISS): Članek v reviji
Konec prepovedi (OpenAIRE): 2023-08-01
Strani: art. 170 (23 str.)
Letnik: ǂVol. ǂ19
Zvezek: ǂiss. ǂ4
Čas izdaje: Aug. 2022
DOI: 10.1007/s00009-022-02076-5
ID: 15776717