diplomsko delo
Kristjan Petauer (Author), Peter Kokol (Mentor)

Abstract

Diplomsko delo obravnava področje prepoznavanja objektov in sledenja v realnem času, s povezavo med računalniškim vidom in umetno inteligenco. Opiše metode za prepoznavanje in sledenje objektom, njihovo integracijo v naprave, uporabo, prednosti, slabosti, tehnične in etične ovire ter praktični primer uporabe s Pythonom, OpenCV in NumPy.

Keywords

računalniški vid;umetna inteligenca;prepoznava objektov;etične ovire;diplomske naloge;

Data

Language: Slovenian
Year of publishing:
Typology: 2.11 - Undergraduate Thesis
Organization: UM FERI - Faculty of Electrical Engineering and Computer Science
Publisher: [K. Petauer]
UDC: 004.8(043.2)
COBISS: 181678595 Link will open in a new window
Views: 306
Downloads: 26
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Advances in real-time object recognition and tracking: the connection between computer vision and AI
Secondary abstract: The thesis addresses the area of object recognition and real-time tracking with the connection between computer vision and artificial intelligence. It describes methods for object recognition and tracking, their integration into devices, usage, advantages, disadvantages, technical and ethical barriers, and a practical example using Python, OpenCV, and NumPy.
Secondary keywords: computer vision;artificial intelligence;object recognition;ethical barriers;
Type (COBISS): Bachelor thesis/paper
Thesis comment: Univ. v Mariboru, Fak. za elektrotehniko, računalništvo in informatiko, Računalništvo in informacijske tehnologije
Pages: 1 spletni vir (1 datoteka PDF (X, 47.))
ID: 19990852