diplomsko delo
Aljaž Košmerlj (Author), Ivan Bratko (Mentor)

Abstract

Konstrukcija krivulj preživetja iz cenzuriranih podatkov z metodami strojnega učenja

Keywords

analiza preživetja;krivulja preživetja;cenzurirani podatki;podatki o času do dogodka;Kaplan Meierjev model;strojno učenje;računalništvo;univerzitetni študij;diplomske naloge;

Data

Language: Slovenian
Year of publishing:
Typology: 2.11 - Undergraduate Thesis
Organization: UL FRI - Faculty of Computer and Information Science
Publisher: [A. Košmerlj]
UDC: 004(043.2)
COBISS: 6750292 Link will open in a new window
Views: 168
Downloads: 11
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: [Constructing survival curves from censored data with machine learning methods]
Secondary abstract: In the present thesis I introduce and evaluate a new machine learning method for estimating survival functions from survival analysis data. Firstly, I describe the field of survival analysis and the problems it deals with. I introduce and define the basic terms of survival analysis, like survival function and survival curve. I also define censored data, a speciallity of survival analysis data, and explain their importance and the learning problems they cause. As a reference method I describe the Kaplan-Meier estimator, a well-known statistical method for estimating survival curves, that serves as a conceptual basis for the new proposed method. I close the introduction with a short overview of the advances of machine learning in the field of survival analysis, concluding that so far there are no well established meachine learning methods in this field. I continue with an in depth description of the proposed method and it's potential advantages. To test the new method thoroughly I start with a series of tests on artificially generated data from a physics domain. The new method proves itself useful and can match the accuracy of the Kaplan-Meier estimator. I discuss the problem of nonmonotonic survival curve estimations, that can be obtained using the proposed method. All the tests are repeated on a set of real medical data describing the prognostic value of protein markers for survival of metastatic breast cancer patients. The results further confirm the proposed method as useful. In conclusion I present the possibilities of improving the proposed method and suggest other prospects of using machine learning techniques in survival analysis.
Secondary keywords: survival analysis;survival curve;censored data;time to event data;Kaplan-Meier estimator;machine learning;computer science;diploma;
File type: application/pdf
Type (COBISS): Undergraduate thesis
Thesis comment: Univerza v Ljubljani, Fakulteta za računalništvo in informatiko
Pages: V, 56 str.
ID: 23809240