diplomsko delo
Aljaž Košmerlj (Avtor), Ivan Bratko (Mentor)

Povzetek

Konstrukcija krivulj preživetja iz cenzuriranih podatkov z metodami strojnega učenja

Ključne besede

analiza preživetja;krivulja preživetja;cenzurirani podatki;podatki o času do dogodka;Kaplan Meierjev model;strojno učenje;računalništvo;univerzitetni študij;diplomske naloge;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL FRI - Fakulteta za računalništvo in informatiko
Založnik: [A. Košmerlj]
UDK: 004(043.2)
COBISS: 6750292 Povezava se bo odprla v novem oknu
Št. ogledov: 168
Št. prenosov: 11
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: [Constructing survival curves from censored data with machine learning methods]
Sekundarni povzetek: In the present thesis I introduce and evaluate a new machine learning method for estimating survival functions from survival analysis data. Firstly, I describe the field of survival analysis and the problems it deals with. I introduce and define the basic terms of survival analysis, like survival function and survival curve. I also define censored data, a speciallity of survival analysis data, and explain their importance and the learning problems they cause. As a reference method I describe the Kaplan-Meier estimator, a well-known statistical method for estimating survival curves, that serves as a conceptual basis for the new proposed method. I close the introduction with a short overview of the advances of machine learning in the field of survival analysis, concluding that so far there are no well established meachine learning methods in this field. I continue with an in depth description of the proposed method and it's potential advantages. To test the new method thoroughly I start with a series of tests on artificially generated data from a physics domain. The new method proves itself useful and can match the accuracy of the Kaplan-Meier estimator. I discuss the problem of nonmonotonic survival curve estimations, that can be obtained using the proposed method. All the tests are repeated on a set of real medical data describing the prognostic value of protein markers for survival of metastatic breast cancer patients. The results further confirm the proposed method as useful. In conclusion I present the possibilities of improving the proposed method and suggest other prospects of using machine learning techniques in survival analysis.
Sekundarne ključne besede: survival analysis;survival curve;censored data;time to event data;Kaplan-Meier estimator;machine learning;computer science;diploma;
Vrsta datoteke: application/pdf
Vrsta dela (COBISS): Diplomsko delo
Komentar na gradivo: Univerza v Ljubljani, Fakulteta za računalništvo in informatiko
Strani: V, 56 str.
ID: 23809240