delo diplomskega seminarja
Abstract
Problem tlakovanja je geometrijski problem pri katerem želimo določen lik pokriti z vnaprej podanimi ploščicami. Ker so tovrstni problemi v splošnem težki, smo definirali označena pokritja, ki nam podajajo potreben pogoj za obstoj tlakovanja. V diplomskem delu smo opisali, kako preidemo iz geometrijskega na algebraičen problem. Našli smo izomorfizem, ki slika ploščice v polinome in dokazali, da je problem iskanja označenega pokritja ekvivalententen problemu vsebovanosti polinoma v idealu. Dokazali smo, da je polinom vsebovan v idealu natanko takrat, ko se reducira v 0 po modulu Gröbnerjeve baze. Za iskanje Gröbnerjeve baze ideala, smo uporabili Buchbergerjev algoritem. Na koncu smo na trikotnem mrežastem območju uporabili izpeljano teorijo in dokazali izrek Conwaya in Lagariasa.
Keywords
celica;polinomine;polinomi;ploščice;tlakovanje;označeno pokritje;mrežasto območje;kolobarji;redukcija;ideal;sizigija;nasičenost;Gröbnerjeva baza;Buchbergerjev algoritem;
Data
Language: |
Slovenian |
Year of publishing: |
2024 |
Typology: |
2.11 - Undergraduate Thesis |
Organization: |
UL FMF - Faculty of Mathematics and Physics |
Publisher: |
[D. Hrovat ] |
UDC: |
519.1 |
COBISS: |
207925251
|
Views: |
28 |
Downloads: |
8 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Signed polyomino tilings of a triangular area |
Secondary abstract: |
Tiling problem is a geometric problem in which we aim to cover a certain figure with pre-defined tiles. Since such problems are generally challenging, we have defined signed tilings, which give us a necessary condition for the existence of a tiling. In the thesis, we described how we transition from a geometric problem to an algebraic one. We found an isomorphism that maps tiles to polynomials and proved that the problem of finding a signed tiling is equivalent to the problem of polynomial containment in an ideal. We proved that a polynomial is contained in an ideal exactly when it reduces to 0 with respect to the Gröbner basis. To find the Gröbner basis of the ideal, we used Buchberger's algorithm. Finally, on a triangular lattice region, we applied the derived theory and proved Conway's and Lagarias's theorem. |
Secondary keywords: |
cell;polyominos;polynomials;tiles;tiling;signed tiling;lattices;rings;reduction;ideal;syzygy;saturation;Gröbner basis;Buchberger algorithm; |
Type (COBISS): |
Final seminar paper |
Study programme: |
0 |
Thesis comment: |
Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 1. stopnja |
Pages: |
31 str. |
ID: |
25050659 |