magistrsko delo
Abstract
Živila so osnovne dobrine z velikim vplivom na gospodarsko in družbeno stabilnost, zato je natančno napovedovanje njihovih cen ključno. Modeli globokega učenja lahko prepoznajo kompleksne vzorce v časovnih vrstah, kot so zgodovinske cene živil. V tej raziskavi smo eksperimentalno primerjali konvencionalni pristop učenja in učenje s prenosom znanja v rekurentnih nevronskih mrežah za napovedovanje cen. Po iskanju optimalnih hiperparametrov smo modele naučili nad podatki, uporabili prenos znanja in ovrednotili oba pristopa. Na podlagi pridobljenih rezultatov smo ugotovili, da učenje s prenosom znanja bistveno pospeši proces učenja, vendar na račun slabše napovedne uspešnosti. Kljub temu pa rezultati magistrskega dela prispevajo k razumevanju, kdaj, zakaj in v kakšnih primerih je uporaba učenja s prenosom znanja smiselna izbira.
Keywords
napovedovanje cen živil;učenje s prenosom znanja;analiza časovnih vrst;magistrske naloge;
Data
Language: |
Slovenian |
Year of publishing: |
2024 |
Typology: |
2.09 - Master's Thesis |
Organization: |
UM FERI - Faculty of Electrical Engineering and Computer Science |
Publisher: |
[J. Janković] |
UDC: |
004.85.032.26(043.2) |
COBISS: |
225867523
|
Views: |
0 |
Downloads: |
12 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Utilization of transfer learning with recurrent neural networks for grocery price forecasting |
Secondary abstract: |
Food is a fundamental commodity with a significant impact on economic and social stability, making accurate price forecasting essential. Deep learning models can identify complex patterns in time series, such as historical food prices. In this study, we experimentally compared the conventional learning approach with transfer learning in recurrent neural networks for price forecasting. After identifying optimal hyperparameters, we trained the models, applied transfer learning, and evaluated both approaches. Based on the obtained results, we found that transfer learning significantly accelerates the learning process, though at the cost of predictive performance. Nevertheless, the results of this master’s thesis contribute to understanding when, why, and in what scenarios transfer learning is a sensible choice. |
Secondary keywords: |
food price prediction;transfer learning;RNN;time series analysis; |
Type (COBISS): |
Master's thesis/paper |
Thesis comment: |
Univ. v Mariboru, Fak. za elektrotehniko, računalništvo in informatiko, Informatika in tehnologije komuniciranja |
Pages: |
1 spletni vir (1 datoteka PDF (XI, 73 str.)) |
ID: |
25451064 |