diplomsko delo
Feliks Fortuna (Author), Dejan Lavbič (Mentor)

Abstract

S hitro rastjo uporabe umetne inteligence in strojnega učenja se podjetja soočajo z izzivi implementacije in vzdrževanja modelov v produkcijskem okolju. MLOps je metodologija, ki združuje principe DevOps in naslavlja specifične potrebe strojnega učenja s ciljem avtomatizacije, standardizacije in učinkovitega upravljanja celotnega življenjskega cikla modelov strojnega učenja. V diplomski nalogi smo raziskali vlogo MLOps pri razvoju programske opreme ter izvedli praktično primerjavo z DevOps pristopom na primeru razvoja sistema za napovedovanje zmagovalcev kolesarskih dirk, medtem ko smo druge metodologije razvoja primerjali s teoretičnega vidika. Raziskava je pokazala, da MLOps pristop prinaša številne prednosti pri razvoju sistemov strojnega učenja predvsem v smislu avtomatizacije, sledljivosti in zanesljivosti modelov, medtem ko DevOps ostaja primernejši za projekte z redkejšimi posodobitvami modelov in za okolja z omejenimi računalniškimi viri. Rezultati te raziskave predstavljajo pomemben referenčni okvir za organizacije pri načrtovanju in optimizaciji razvojnih procesov sistemov strojnega učenja.

Keywords

MLOps;DevOps;metodologije;razvoj programske opreme;univerzitetni študij;diplomske naloge;

Data

Language: Slovenian
Year of publishing:
Typology: 2.11 - Undergraduate Thesis
Organization: UL FRI - Faculty of Computer and Information Science
Publisher: [F. Fortuna]
UDC: 004.4:004.85(043.2)
COBISS: 232114691 Link will open in a new window
Views: 124
Downloads: 90
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: The Role of MLOps in Software Development
Secondary abstract: As organizations increasingly adopt artificial intelligence and machine learning, they face significant challenges in production model deployment and maintenance. MLOps emerges as a methodology that integrates DevOps principles with machine learning requirements to streamline model lifecycle management through automation and standardization. In this thesis, we conducted a practical comparison between MLOps and DevOps approaches by implementing a cycling race prediction system, while theoretically analyzing other development methodologies. Our findings demonstrate that MLOps offers superior advantages for machine learning systems through enhanced automation, traceability, and reliability, though DevOps remains better suited for projects with infrequent model updates and limited computational resources. This research provides organizations with a valuable framework for optimizing their machine learning development processes.
Secondary keywords: MLOps;DevOps;methodologies;machine learning;software development;computer and information science;diploma;
Type (COBISS): Bachelor thesis/paper
Study programme: 1000468
Thesis comment: Univ. v Ljubljani, Fak. za računalništvo in informatiko
Pages: 1 spletni vir (1 datoteka PDF (79 str.))
ID: 26084260