magistrsko delo
Alen Gajer (Author), Miha Nemevšek (Mentor)

Abstract

Magistrsko delo obravnava pojav razpada lažnega vakuuma v kvantni teoriji polja. Odskočna rešitev opisuje najbolj verjetno pot tuneliranja med lažnim vakuumom in pravim vakuumom, ampak jo v splošnem ne moremo dobiti analitično in se zato poslužujemo numeričnih metod. Razvil sem paket v programskem jeziku Python imenovan $\textit{PyBounce}$, ki implementira poligonalno metodo za računanje odskočne rešitve in pripadajoče evklidske akcije v dimenzijah $D=2,3,4$. Obstoječa javno dostopna orodja večinoma uporabljajo strelske numerične metode, ki imajo pomanjklivosti pri konvergenci poti v večpoljnem primeru in pri računanju v limiti tanke stene. Te pomanjklivosti rešimo z uporabo poligonalne metode, ki je bila prvič implementirana v orodju $\textit{FindBounce}$. $\textit{PyBounce}$ nadgrajuje $\textit{FindBounce}$ z večjo stabilnostjo, dodano možnostjo iteracije pri razširjenem odskoku, ter dodano povsem novo in originalno opcijo računanja v $D=2$.

Keywords

razpad lažnega vakuuma;razpadna širina;poligonalna metoda;kvantna teorija polja;kozmologija;odskočna rešitev;večpoljni odskok;numerične metode;

Data

Language: Slovenian
Year of publishing:
Typology: 2.09 - Master's Thesis
Organization: UL FMF - Faculty of Mathematics and Physics
Publisher: [A. Gajer]
UDC: 530.145
COBISS: 243858691 Link will open in a new window
Views: 125
Downloads: 35
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: False vacuum decay and the PyBounce package
Secondary abstract: The master thesis addresses the phenomenon of false vacuum decay in quantum field theories. The bounce solution describes the most probable tunneling path between the false vacuum and the true vacuum, but in general, it cannot be obtained analytically and thus numerical methods are employed. I developed a package in Python called $\textit{PyBounce}$, which implements the polygonal method for computing the bounce solution and the corresponding Euclidean action in dimensions $D=2,3,4$. Existing publicly available tools mostly use shooting numerical methods, which have shortcomings in path convergence in the multi-field case and in calculations in the thin-wall limit. These shortcomings are resolved by using the polygonal method, which was first implemented in the tool $\textit{FindBounce}$. $\textit{PyBounce}$ improves upon $\textit{FindBounce}$ by offering greater stability, the added capability of iteration for the extended bounce, and an entirely new and original option for calculations in $D=2$.
Secondary keywords: false vacuum decay;decay rate;polygonal method;quantum field theory;cosmology;the bounce solution;multifield bounce;numerical methods;
Type (COBISS): Master's thesis/paper
Study programme: 0
Thesis comment: Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za fiziko
Pages: 63 str.
ID: 26828296