Vasyl Shvalya (Author), Andrii Breus (Author), Oleg Baranov (Author), Damjan Vengust (Author), Janez Zavašnik (Author), Uroš Cvelbar (Author)

Abstract

The demand for rapid, field-deployable detection of hazardous substances has intensified the search for plasmonic sensors with both high sensitivity and fabrication simplicity. Conventional approaches to plasmonic substrates, however, often rely on lithographic precision or complex chemistries limiting scalability and reproducibility. Here, a facile, one-step synthesis of vertically aligned 2D nanosheets composed of intergrown Cu2O/CuO crystallites is presented, fabricated via oxygen plasma discharge on copper substrates. Decorated with a discontinuous Ag nanoparticle layer, the substrates serve as high-performance plasmonic metasurface exhibiting nanomolar sensitivity of explosive molecules, with detection limits as low as 4–5 nm for tetryl and 2–3 nm for HMX under 488 nm excitation. Importantly, the SERS (Surface enhanced Raman scattering) activity expands into a broad spectral range (488, 535, 633 nm), enabled by the formation of plasmonic “hotspots” network within nanoparticle gaps, crevices, that cumulatively boost SERS signal. A pronounced red-shift in the symmetric NO2 stretching mode of tetryl is further demonstrated, attributed to LUMO-mediated charge transfer from the Ag Fermi level—highlighting the need for laser- and substrate-sensitive interpretation of vibrational data. Together, these findings advance the rational design of low-cost, reproducible SERS substrates for trace chemical detection, with potential for integration into autonomous sensing platforms.

Keywords

plasmonic sensors;surface enhanced Raman scattering;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: IJS - Jožef Stefan Institute
Publisher: Wiley
UDC: 620.1/.2
COBISS: 249057539 Link will open in a new window
ISSN: 1613-6829
Views: 229
Downloads: 99
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary keywords: Nevarne snovi;Detektorji;
Source comment: Nasl. z nasl. zaslona; Soavtorji iz Slovenije: Damjan Vengust, Janez Zavašnik, Uroš Cvelbar; Opis vira z dne 16. 9. 2025;
Pages: str. 1-12
Volume: ǂVol. ǂ21
Issue: ǂiss. ǂ, [article no.] e06814
Chronology: [in press] 2025
DOI: 10.1002/smll.202506814
ID: 27300911
Recommended works:
, diplomsko delo visokošolskega strokovnega študija Organizacija in management kadrovskih in izobraževalnih procesov
, diplomsko delo visokošolskega strokovnega študija Organizacija in management delovnih procesov