Ivan Ivanšić (Author), Uroš Milutinović (Author)

Abstract

Naj bo ▫$\Sigma(\tau)$▫ posplošena krivulja Sierpińskega. Le-ta se lahko na naraven način identificira z Lipscombovim prostorom ▫${\cal J}(\tau)$▫. Tedaj za poljuben ▫$n$▫-dimenzionalni metrični prostor ▫$X$▫ s težo ▫$\tau$▫ obstaja vložitev prostora ▫$X$▫ v ▫$L_n(\tau) \subseteq \Sigma(\tau)^{n+1}$▫, kjer je ▫$L_n(\tau)$▫ množica vseh točk z vsaj eno iracionalno koordinato. Tu dokažemo, da to vložitev lahko izberemo tako, da v določeni točki zavzema vnaprej podano vrednost. Pravzaprav je dokazan močnejši izrek, da so vrednosti vložitve lahko vnaprej podane v točkah poljubne končne množice.

Keywords

matematika;topologija;dimenzija pokrivanja;posplošena krivulja Sierpińskega;univerzalni prostor;Lipscombov univerzalni prostor;vložitev;razširitev;mathematics;topology;covering dimension;generalized Sierpiński curve;universal space;Lipscomb universal space;embedding;extension;

Data

Language: English
Year of publishing:
Typology: 0 - Not set
Organization: UM PEF - Faculty of Education
UDC: 515.127
COBISS: 12235609 Link will open in a new window
ISSN: 1318-4865
Views: 53
Downloads: 10
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary title: Točkovna verzija Lipscombovega vložitvenega izreka
Secondary abstract: Let ▫$\Sigma(\tau)$▫ be the generalized Sierpiński curve, which is naturally identified with the Lipscomb's space ▫${\cal J}(\tau)$▫. Then for any ▫$n$▫-dimensional metric space ▫$X$▫ of weight ▫$\tau$▫ there is an embedding of ▫$X$▫ into ▫$L_n(\tau) \subseteq \Sigma(\tau)^{n+1}$▫, ▫$L_n(\tau)$▫ being the set of points having at least one irrational coordinate. Here we prove that this embedding may be choosen in such a way that its value at a certain point (the base point) is given in advance. In fact, we prove a stronger result that the values of the embedding may be given in advance at any finite set of points of ▫$X$▫.
Secondary keywords: matematika;topologija;dimenzija pokrivanja;posplošena krivulja Sierpińskega;univerzalni prostor;Lipscombov univerzalni prostor;vložitev;razširitev;
URN: URN:SI:UM:
Type (COBISS): Not categorized
Pages: str. 1-14
Volume: ǂVol. ǂ40
Issue: ǂšt. ǂ854
Chronology: 2002
ID: 66290
Recommended works:
, no subtitle data available
, no subtitle data available
, no subtitle data available