Language: | English |
---|---|
Year of publishing: | 2002 |
Typology: | 0 - Not set |
Organization: | UM PEF - Faculty of Education |
UDC: | 515.127 |
COBISS: | 12235609 |
ISSN: | 1318-4865 |
Views: | 53 |
Downloads: | 10 |
Average score: | 0 (0 votes) |
Metadata: |
Secondary language: | Slovenian |
---|---|
Secondary title: | Točkovna verzija Lipscombovega vložitvenega izreka |
Secondary abstract: | Let ▫$\Sigma(\tau)$▫ be the generalized Sierpiński curve, which is naturally identified with the Lipscomb's space ▫${\cal J}(\tau)$▫. Then for any ▫$n$▫-dimensional metric space ▫$X$▫ of weight ▫$\tau$▫ there is an embedding of ▫$X$▫ into ▫$L_n(\tau) \subseteq \Sigma(\tau)^{n+1}$▫, ▫$L_n(\tau)$▫ being the set of points having at least one irrational coordinate. Here we prove that this embedding may be choosen in such a way that its value at a certain point (the base point) is given in advance. In fact, we prove a stronger result that the values of the embedding may be given in advance at any finite set of points of ▫$X$▫. |
Secondary keywords: | matematika;topologija;dimenzija pokrivanja;posplošena krivulja Sierpińskega;univerzalni prostor;Lipscombov univerzalni prostor;vložitev;razširitev; |
URN: | URN:SI:UM: |
Type (COBISS): | Not categorized |
Pages: | str. 1-14 |
Volume: | ǂVol. ǂ40 |
Issue: | ǂšt. ǂ854 |
Chronology: | 2002 |
ID: | 66290 |