| Jezik: | Angleški jezik |
|---|---|
| Leto izida: | 2002 |
| Tipologija: | 0 - Ni določena |
| Organizacija: | UM PEF - Pedagoška fakulteta |
| UDK: | 515.127 |
| COBISS: |
12235609
|
| ISSN: | 1318-4865 |
| Št. ogledov: | 53 |
| Št. prenosov: | 10 |
| Ocena: | 0 (0 glasov) |
| Metapodatki: |
|
| Sekundarni jezik: | Slovenski jezik |
|---|---|
| Sekundarni naslov: | Točkovna verzija Lipscombovega vložitvenega izreka |
| Sekundarni povzetek: | Let ▫$\Sigma(\tau)$▫ be the generalized Sierpiński curve, which is naturally identified with the Lipscomb's space ▫${\cal J}(\tau)$▫. Then for any ▫$n$▫-dimensional metric space ▫$X$▫ of weight ▫$\tau$▫ there is an embedding of ▫$X$▫ into ▫$L_n(\tau) \subseteq \Sigma(\tau)^{n+1}$▫, ▫$L_n(\tau)$▫ being the set of points having at least one irrational coordinate. Here we prove that this embedding may be choosen in such a way that its value at a certain point (the base point) is given in advance. In fact, we prove a stronger result that the values of the embedding may be given in advance at any finite set of points of ▫$X$▫. |
| Sekundarne ključne besede: | matematika;topologija;dimenzija pokrivanja;posplošena krivulja Sierpińskega;univerzalni prostor;Lipscombov univerzalni prostor;vložitev;razširitev; |
| URN: | URN:SI:UM: |
| Vrsta dela (COBISS): | Delo ni kategorizirano |
| Strani: | str. 1-14 |
| Letnik: | ǂVol. ǂ40 |
| Zvezek: | ǂšt. ǂ854 |
| Čas izdaje: | 2002 |
| ID: | 66290 |