Jezik: | Angleški jezik |
---|---|
Leto izida: | 2002 |
Tipologija: | 0 - Ni določena |
Organizacija: | UM PEF - Pedagoška fakulteta |
UDK: | 515.127 |
COBISS: | 12235609 |
ISSN: | 1318-4865 |
Št. ogledov: | 53 |
Št. prenosov: | 10 |
Ocena: | 0 (0 glasov) |
Metapodatki: |
Sekundarni jezik: | Slovenski jezik |
---|---|
Sekundarni naslov: | Točkovna verzija Lipscombovega vložitvenega izreka |
Sekundarni povzetek: | Let ▫$\Sigma(\tau)$▫ be the generalized Sierpiński curve, which is naturally identified with the Lipscomb's space ▫${\cal J}(\tau)$▫. Then for any ▫$n$▫-dimensional metric space ▫$X$▫ of weight ▫$\tau$▫ there is an embedding of ▫$X$▫ into ▫$L_n(\tau) \subseteq \Sigma(\tau)^{n+1}$▫, ▫$L_n(\tau)$▫ being the set of points having at least one irrational coordinate. Here we prove that this embedding may be choosen in such a way that its value at a certain point (the base point) is given in advance. In fact, we prove a stronger result that the values of the embedding may be given in advance at any finite set of points of ▫$X$▫. |
Sekundarne ključne besede: | matematika;topologija;dimenzija pokrivanja;posplošena krivulja Sierpińskega;univerzalni prostor;Lipscombov univerzalni prostor;vložitev;razširitev; |
URN: | URN:SI:UM: |
Vrsta dela (COBISS): | Delo ni kategorizirano |
Strani: | str. 1-14 |
Letnik: | ǂVol. ǂ40 |
Zvezek: | ǂšt. ǂ854 |
Čas izdaje: | 2002 |
ID: | 66290 |