Abstract
Naj bo ▫$G$▫ mediansk graf brez 3-kocke. Pokazano je, da velja ▫$\frac{k}{2} \ge \sqrt{n}-1 \ge \frac{m}{2\sqrt{n}} \ge \sqrt{s} \ge r-1$▫, kjer so ▫$n, m, s, k$▫ in ▫$r$▫ števila točk, povezav, kvadratov, ▫$\Theta$▫-razredov in število povezav najmanšega ▫$\Theta$▫-razreda grafa ▫$G$▫. Enakosti so dosežene natanko tedaj, ko je ▫$G$▫ kartezični produkt dveh dreves istega reda. Obravnavan je tudi polinom kock medianskih grafov in pokazano je, da lahko ravninske medianske grafe brez 3-kocke prepoznamo v linearnem času.
Keywords
matematika;teorija grafov;medianski graf;kartezični produkt;prepoznavni algoritem;mathematics;graph theory;median graph;cube-free graph;Cartesian product;recognition algoritem;
Data
Language: |
English |
Year of publishing: |
2003 |
Typology: |
0 - Not set |
Organization: |
UL FMF - Faculty of Mathematics and Physics |
UDC: |
519.17 |
COBISS: |
12589913
|
ISSN: |
1318-4865 |
Views: |
47 |
Downloads: |
11 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
Slovenian |
Secondary title: |
O medianskih grafih brez 3-kocke |
Secondary abstract: |
Let ▫$G$▫ be a cube-free median graph. It is proved that ▫$\frac{k}{2} \ge \sqrt{n}-1 \ge \frac{m}{2\sqrt{n}} \ge \sqrt{s} \ge r-1$▫, where ▫$n, m, s, k$▫ and ▫$r$▫ are the number of vertices, edges, squares, ▫$\Theta$▫-classes, and the number of edges in a smallest ▫$\Theta$▫-class of ▫$G$▫, respectively. Moreover, the equalities characterize Cartesian product of two trees of the same order. The cube polynomial of cube-free median graphs is also considered and it is shown that planar cube-free median graphs can be recognized in linear time. |
Secondary keywords: |
matematika;teorija grafov;medianski graf;kartezični produkt;prepoznavni algoritem; |
URN: |
URN:SI:UM: |
Type (COBISS): |
Not categorized |
Pages: |
str. 1-9 |
Volume: |
ǂVol. ǂ41 |
Issue: |
ǂšt. ǂ886 |
Chronology: |
2003 |
ID: |
66367 |