Abstract
Sternovi polinomi ▫$B_k(t)$▫, ▫$k \ge 0$▫, ▫$t \in \RR$▫, so vpeljani na naslednji način: ▫$B_0(t) = 0$▫, ▫$B_1(t) = 1$▫, ▫$B_{2n}(t) = tB_n(t)$▫ in ▫$B_{2n+1}(t) = B_{n+1}(t) + B_n(t)$▫. Pokazano je, da ima ▫$B_n(t)$▫ enostavno eksplicitno reprezentacijo s hiperebinarnimi reprezentacijami ▫$n-1$▫ in da je odvod ▫$B'_{2n-1}(0)$▫ enak številu enic v standardni Grayjevi kodi za ▫$n-1$▫. Dokazano je tudi, da je stopnja polinoma ▫$B_n(t)$▫ enaka razliki med dolžino in težo nesosednje predstavitve števila ▫$n$▫.
Keywords
matematika;Sternovo (dvoatomsko) zaporedje;Sternovi polinomi;hiperbinarna reprezentacija;standardna Grayjeva koda;nesosednja predstavitev;mathematics;Stern (diatomic) sequence;Stern polynomials;hyperbinary representation;standard Gray code;non-adjacent form;
Data
Language: |
English |
Year of publishing: |
2005 |
Typology: |
0 - Not set |
Organization: |
UM PEF - Faculty of Education |
UDC: |
511.217 |
COBISS: |
13805913
|
ISSN: |
1318-4865 |
Views: |
30 |
Downloads: |
6 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
Slovenian |
Secondary title: |
Sternovi polimomi |
Secondary abstract: |
Stern polynomials ▫$B_k(t)$▫, ▫$k \ge 0$▫, ▫$t \in \RR$▫, are introduced in the following way: ▫$B_0(t) = 0$▫, ▫$B_1(t) = 1$▫, ▫$B_{2n}(t) = tB_n(t)$▫, and ▫$B_{2n+1}(t) = B_{n+1}(t) + B_n(t)$▫. It is shown that ▫$B_n(t)$▫ has a simple explicit representation in terms of the hyperbinary representations of ▫$n-1$▫ and that ▫$B'_{2n-1}(0)$▫ equals the number of 1's in the standard Gray code for ▫$n-1$▫. It is also proved that the degree of ▫$B_n(t)$▫ equals the difference between the length and the weight of the non-adjacent form of ▫$n$▫. |
Secondary keywords: |
matematika;Sternovo (dvoatomsko) zaporedje;Sternovi polinomi;hiperbinarna reprezentacija;standardna Grayjeva koda;nesosednja predstavitev; |
URN: |
URN:SI:UM: |
Type (COBISS): |
Not categorized |
Pages: |
str. 1-11 |
Volume: |
ǂVol. ǂ43 |
Issue: |
ǂšt. ǂ994 |
Chronology: |
2005 |
ID: |
66684 |