magistrsko delo
Povzetek
Kitajski obroči so uganka, ki je pritegnila pozornost tako laikov kot tudi številnih matematikov. Čeprav igra danes nosi ime kitajski obroči, ni potrjeno, da je izvor res kitajski. Matematiki so v začetku 16. stoletja že obravnavali kitajske obroče in razvili učinkovite algoritme reševanja, matematični model in teorija pa se je pojavila šele z Grosom v 19. stol. V delu obravnavamo optimalen način reševanja klasičnih kitajskih obročev kot tudi pospešenih kitajskih obročev.
Graf stanj kitajskih obročev je izomorfen grafu poti, zato ima graf stanj nekatere zanimive lastnosti. Med pomembnejšimi lastnostmi je povezava med stanjem grafa in oddaljenostjo od začetnega vozlišča. Za prehajanje med stanjem grafa in oddaljenostjo uporabimo Grosov avtomat, v obratno smer pa uporabimo Grayev avtomat. Iz kitajskih obročev izvirajo tudi nekatera zanimiva zaporedja. Lichtenbergovo zaporedje je zaporedje potrebnih premikov za rešitev problema kitajskih obročev z $n$ obroči, Grosovo zaporedje pa je zaporedje optimalnih premikov pri dajanju obročev na nosilec. V delu je predstavljena in analizirana tudi igra zaklenjeni slončki, ki je različica igre kitajskih obročev.
Ključne besede
kitajski obroči;Grosov avtomat;Grayev avtomat;popolne kode;Lihtenbergovo zaporedje;Grosovo zaporedje;zaklenjeni slončki;
Podatki
Jezik: |
Slovenski jezik |
Leto izida: |
2018 |
Tipologija: |
2.09 - Magistrsko delo |
Organizacija: |
UL FMF - Fakulteta za matematiko in fiziko |
Založnik: |
[M. Razpotnik] |
UDK: |
519.1 |
COBISS: |
18454617
|
Št. ogledov: |
932 |
Št. prenosov: |
235 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Angleški jezik |
Sekundarni naslov: |
Chinese rings |
Sekundarni povzetek: |
Chinese rings is a puzzle that has attracted the attention of laity and mathematicians. Today we recognize the puzzle by the name Chinese rings; however, it is not confirmed that it really comes from China. Although mathematicians had already in the 16th century started with the discussion about Chinese rings and developed effective solving algorithms, the mathematical model and theory emerged only in the 19th century with Gros.
In this work we present the optimal way of solving classic Chinese rings as well as accelerated Chinese rings.
The state graph of the Chinese rings is isomorphic to the path graph, what gives to the state graph some interesting properties.
Among the most important characteristics is the connection between a state of the graph and its distance from the initial vertex. We use Gros's automaton to get a distance
from the state of the graph and in the opposite direction we use Gray's automaton.
We analyse some sequences coming from the Chinese rings.
The Lichtenberg sequence is a sequence of necessary moves to solve the problem of Chinese rings with $n$ rings, and the Gros sequence is the sequence of optimal moves when moving rings on the bar. A version of Chinese rings which is named Elephant Spin Out Puzzle is also introduced and analysed in this work. |
Sekundarne ključne besede: |
Chinese rings;accelerated Chinese rings;Gros code automaton;Gray code automaton;perfect codes;Lichtenberg sequence;Gros sequence;elephant spin out puzzle; |
Vrsta dela (COBISS): |
Magistrsko delo/naloga |
Študijski program: |
0 |
Komentar na gradivo: |
Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Pedagoška matematika |
Strani: |
VI, 56 str. |
ID: |
10962330 |