Abstract
Naj bo ▫${\mathcal{J}}(\tau)$▫ Lipscombov enodimenzionalni prostor in ▫$L_n(\tau) = \{x \in {\mathcal{J}}(\tau)^{n+1}|$▫ vsaj ena koordinata od ▫{\sl x}▫ je iracionalna ▫$\} \subseteq {\mathcal{J}}(\tau)^{n+1}$▫ Lipscombov ▫$n$▫-dimenzionalni univerzalni prostor s težo ▫$\tau \ge \aleph_0$▫. V tem članku dokazujemo, da če je ▫$X$▫ poln metrizabilni prostor in velja ▫$\dim X \le n$▫, ▫$wX \le \tau$▫, tedaj obstaja zaprta vložitev prostora ▫$X$▫ v ▫$L_n(\tau)$▫. Še več, vsako zvezno funkcijo ▫$f: X \to {\mathcal{J}}(\tau)^{n+1}$▫ lahko poljubno natančno aproksimiramo z zaprto vložitvijo ▫$\psi: X \to L_n(\tau)$▫. Razen tega sta dokazani relativna verzija in punktirana verzija. V primeru separabilnosti je dokazan analogni rezultat, v katerem je klasična trikotna krivulja Sierpińskega (ki je homeomorfna ▫${\mathcal{J}}(3)$▫) nadomestila ▫${\mathcal{J}(\aleph_0)}$▫.
Keywords
matematika;topologija;dimenzija pokrivanja;posplošena krivulja Sierpińskega;univerzalni prostor;Lipscombov univerzalni prostor;vložitev;razširitev;poln metrični prostor;zaprta vložitev;mathematics;topology;covering dimension;embedding;closed embedding;generalized Sierpiński curve;universal space;Lipscomb universal space;complete metric space;extension;
Data
Language: |
English |
Year of publishing: |
2006 |
Typology: |
0 - Not set |
Organization: |
UM PEF - Faculty of Education |
UDC: |
515.127 |
COBISS: |
14083417
|
ISSN: |
1318-4865 |
Views: |
760 |
Downloads: |
76 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
Unknown |
Secondary title: |
Zaprte vložitve v Lipscombov univerzalni prostor |
Secondary abstract: |
Let ▫${\mathcal{J}}(\tau)$▫ be Lipscomb's one-dimensional space and ▫$L_n(\tau) = \{x \in {\mathcal{J}}(\tau)^{n+1}|$▫ at least one coordinate of ▫{\sl x}▫ is irrational ▫$\} \subseteq {\mathcal{J}}(\tau)^{n+1}$▫ Lipscomb's ▫$n$▫-dimensional universal space of weight ▫$\tau \ge \aleph_0$▫ In this paper we prove that if ▫$X$▫ is a complete metrizable space and ▫$\dim X \le n$▫, ▫$wX \le \tau$▫, then there is a closed embedding of ▫$X$▫ into ▫$L_n(\tau)$▫. Furthermore, any map ▫$f: X \to {\mathcal{J}}(\tau)^{n+1}$▫ can be approximated arbitrarily close by a closed embedding ▫$\psi: X \to L_n(\tau)$▫. Also, relative and pointed versions are obtained. In the separable case an analogous result is obtained, in which the classic triangular Sierpiński curve (homeomorphic to ▫${\mathcal{J}}(3)$▫) is used instead of ▫${\mathcal{J}(\aleph_0)}$▫. |
Secondary keywords: |
matematika;topologija;dimenzija pokrivanja;posplošena krivulja Sierpińskega;univerzalni prostor;Lipscombov univerzalni prostor;vložitev;razširitev;poln metrični prostor;zaprta vložitev; |
URN: |
URN:SI:UM: |
Type (COBISS): |
Not categorized |
Pages: |
str. 1-14 |
Volume: |
ǂVol. ǂ44 |
Issue: |
ǂšt. ǂ1009 |
Chronology: |
2006 |
ID: |
66868 |